Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T12:31:55.483Z Has data issue: false hasContentIssue false

Nature and Excitation Mechanism of the Emission-dominating Minority Eu-center in GaN Grown by Organometallic Vapor-phase Epitaxy

Published online by Cambridge University Press:  07 July 2011

Jonathan Poplawsky
Affiliation:
Physics, Lehigh University, Bethlehem, Pennsylvania, U.S.A.
Nathaniel Woodward
Affiliation:
Physics, Lehigh University, Bethlehem, Pennsylvania, U.S.A.
Atsushi Nishikawa
Affiliation:
Division of Materials and Manufacturing Science, Osaka University, Osaka, Japan.
Yasufumi Fujiwara
Affiliation:
Division of Materials and Manufacturing Science, Osaka University, Osaka, Japan.
Volkmar Dierolf
Affiliation:
Physics, Lehigh University, Bethlehem, Pennsylvania, U.S.A.
Get access

Abstract

In-situ doped Eu ions in GaN grown by Organometallic Vapor-phase Epitaxy (OMVPE) at different pressures were investigated under different excitation methods and through the use of the following experimental techniques: (1) resonant site-selective laser irradiation (2) electron beam excitation, and (3) a dual excitation using a combination of electron beam and laser irradiation. With these means, we have examined the difference in the excitation pathways that result from resonant laser and electron hole (e-h) pair excitation of Eu ions for two different distinct incorporation sites, which are responsible for most of the luminescence. We have obtained clear evidence that e-h pairs do not have the ability to excite all of the ions and that there is excitation trapping by defects involved in the Eu excitation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Munasinghe, C., Steckl, A., Nyein, E. E., Hommerich, U., Peng, H., Everitt, H., Fleischman, Z., Dierolf, V., and Zavada, J., Mater. Res. Soc. Symp. Proc. 866, V3.1 (2005).Google Scholar
2. Munasinghe, C., Heikenfeld, J., Dorey, R., Whatmore, R., Bender, J. P., Wager, J. F., and Steckl, A. J., IEEE Trans. Electron Devices 52, 194 (2005).Google Scholar
3. Nishikawa, A., Kawasaki, T., Furukawa, N., Terai, Y., and Fujiwara, Y., Appl. Phys. Express 2, 071004 (2009).Google Scholar
4. Ugolini, C., Lin, J., Jiang, H., and Zavada, J., Appl. Phys. Lett. 97, 141109 (2010).Google Scholar
5. Dahal, R., Ugolini, C., Lin, J. Y., Jiang, H. X., and Zavada, J. M., Appl. Phys. Lett. 93, 033502 (2008).Google Scholar
6. Park, J. H. and Steckl, A. J., Opt. Mater. 28, 859 (2006).Google Scholar
7. Nishikawa, A., Furukawa, N., Kawasaki, T., Terai, Y., and Fujiwara, Y., Appl. Phys. Lett. 97, 051113 (2010).Google Scholar
8. Steckl, A. J., Heikenfeld, J. C., Lee, D. S, Garter, M. J., Baker, C. C., Wang, Y, and Jones, R., IEEE J Sel. Top. Quant. 8, 4 (2002).Google Scholar
9. Woodward, N., Poplawsky, J., Mitchell, B., Nishikawa, A., Fujiwara, Y., and Dierolf, V., Appl.Phys. Lett.,98, 011102 (2011)Google Scholar
10. Woodward, N., Nishikawa, A., Fujiwara, Y., and Dierolf, V., Opt. Mater. 33, 7 (2010).Google Scholar
11. Fleischman, Z., Munasinghe, C., Steckl, A. J., Wakahara, A., Zavada, J., and Dierolf, V., Appl. Phys. B: Lasers Opt. 97, 607 (2009).Google Scholar
12. Roqan, I. S., O’Donnell, K. P., Martin, R. W., Edwards, P. R., Song, S. F., Vantomme, A., Lorenz, K., Alves, E., and Bockowski, M., Phys. Rev. B 81, 085209 (2010).Google Scholar
13. Lorenz, K., Alves, E., Roqan, S., O’Donnell, K. P., Nishikawa, A., Fujiwara, Y., and Bockowski, M., Appl. Phys. Lett. 97, 111911 (2010).Google Scholar