Article contents
Natural Occurrence and Stability of Pyrochlore in Carbonatites, Related Hydrothermal Systems, and Weathering Environments
Published online by Cambridge University Press: 15 February 2011
Abstract
Stoichiometric and non-stoichiometric (defect) pyrochlores crystallize during the magmatic and late magmatic-hydrothermal phases of carbonatite emplacement (T > 450–550 °C, P < 2 kb). Defect pyrochlores can also form at low temperatures in laterite horizons during weathering. After crystallization, pyrochlore is subject to alteration by hydrothermal fluids (T ∼ 550-200°C) and ground water. Alteration occurs primarily by ion exchange of low valence A-site cations together with O, F, and OH ions. The high valence cations Th and U are generally immobile; however, we have documented one example of hydrothermal alteration involving loss of U together with cation exchange at the B-site in samples from Mountain Pass, California. During laterite accumulation, the cation exchange rate of pyrochlore greatly exceeds the rate of matrix dissolution. The exceptional durability of pyrochlore in natural environments is related to the stability of the B-site framework cations. In carbonatites, defect pyrochlores may contain significant amounts of Si (up to 7.6 wt% SiO2) which is negatively correlated with Nb.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 10
- Cited by