Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T12:29:42.687Z Has data issue: false hasContentIssue false

Nanotubes in Low Temperature Spray Deposited Nanocrystalline HgSe: I thin films

Published online by Cambridge University Press:  01 February 2011

Ranga Rao Arnepalli
Affiliation:
[email protected], Indian Institute of Technology Delhi, Centre for Energy Studies, Hauz Khas, New Delhi, Delhi, 110016, India, 91-11-26596469
Viresh Dutta
Affiliation:
[email protected], Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, Delhi, 110016, India
Get access

Abstract

HgSe nanotubes have been prepared by spray deposition of solvothermally synthesized HgSe: Iodine nanoparticles on glass substrates at low temperature (200°C). Spray deposition was done without voltage and with an externally applied voltage (700V) to the nozzle and it is found from TEM studies that the average length of the nanotubes increases in case of the films deposited with applied voltage compared to that of without voltage. But there is no change in the average diameter (~ 35 nm). The nanotubes are found to have cubic crystal structure. Iodine is found to act as a catalyst and helps in the growth of nanotubes. The growth mechanism of the nanotubes is analogous to the well known solution-liquid-solid/vapor-liquid-solid (SLS/VLS) mechanism. The EDAX analysis of the tip of the nanotube reveals the presence of Hg, Se and Iodine in the ratio of 73:2:24 for the spot size of <1μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zhu, Y.Q., Sekine, T., Brigatti, K.S., Firth, S., Tenne, R., Rosentsveig, R., Kroto, H.W. and Walton, R.M., J.Am.Chem.Soc. 125, 1329 (2003).Google Scholar
[2] Rothschild, A., Chohen, S.R., and Tenne, R., Appl.Phys.Lett 75, 4025 (1999).Google Scholar
[3] Rao, C.N.R., Satishkumar, B.C., Govindaraj, A., and Nath, M. Chem.Physchem. 2, 78 (2001).Google Scholar
[4] Satishkumar, B.C., Thomas, P.J., Govindaraj, A. and Rao, C.N.R., Appl.Phys.Lett. 77, 2530 (2000).Google Scholar
[5] Iijima, S., Nature 354, 56 (1991).Google Scholar
[6] Tenne, R., Margulis, L., Genut, M. and Hodes, G., Nature 360, 444 (1992).Google Scholar
[7] Margulis, L., Salltra, G., Tenne, R. and Talianker, M., Nature 365, 144 (1993).Google Scholar
[8] Remskar, M., Mrzel, A., Jesih, A. and Levy, F., Adv.Mater. 14, 680 (2002).Google Scholar
[9] Pan, Z.W., Dai, Z.R., and Wang, Z.L., Science 291, 1947 (2001).Google Scholar
[10] Heath, J.R., Kuekes, P.J., Synder, G., and Williams, R.S., Science 280, 1717 (1998).Google Scholar
[11] Snoke, D., Science 273, 1351 (1996).Google Scholar
[12] Rao, C.N.R., Deepak, F.L., Gundiah, Gautam, and Govindaraj, A., Progr. Solid State Chem. 31, 5 (2003).Google Scholar
[13] RangaRao, A. and Dutta, V., Phys.stat.sol. (a) 203, 854 (2006).Google Scholar
[14] Law, M., Goldberger, J., and Yang, P., Ann. Rev. Mater. 34, 83 (2004).Google Scholar
[15] Borah, R., Deka, N. and Sarma, J., J. Chem. Res. (S),110 (1997).Google Scholar
[16] Deka, N., Mariotte, A.M. and Boumendjel, A., Green Chemistry, 3, 263 (2001).Google Scholar
[17] Whisett, C.R., Broerman, J.G. and Summers, C. J. 1981 Semiconductors and Semimetals vol. 16, ed Willardson, R K and Beer, A C (New York: Academic).Google Scholar
[18] Singh, K. and Mishra, S.S.D., J. Ind. Chem. Soc. 76, 104 (1999).Google Scholar
[19] Debais, G., Phys. stat. sol (a) 83, 269 (1984).Google Scholar
[20] Zylberajch, C., Ruaudelteixier, A. and Barraud, A., Thin Solid Films 179, 9 (1989).Google Scholar
[21] Park, Y.T., Lee, S.G. and Kim, Y.U., Int. J. Hydrogen Energy 20, 711 (1995).Google Scholar
[22] Ding, A.T., Zhang, J.R., Hong, J.M., Zhu, J.J., and Chen, H.Y., J.Cryst.growth, 260, 527 (2004).Google Scholar
[23] Tondare, V.N, Balasubramanian, C., Shende, S.V., Joag, D.S., Godbole, V.P., Bhoraskar, S.V. and Bhadbhade, M., Appl. Phys. Lett. 80, 4813 (2002).Google Scholar
[24] Zhang, H., Ma, X.Yang, Xu, Jin, and Yang, D., J.Cryst. Growth, 263, 372 (2004).Google Scholar
[25] Xu, j., Zhao, Y. and Zou, Chunyun, Chemical Physics Lett., 2006 (manuscript in press).Google Scholar
[26] Rao, A. Ranga and Dutta, V. Phys. stat. sol (a) 201, R72 (2004).Google Scholar
[27] Krishna, K. Vamsi and Dutta, V., Thin Solid Films 444, 17 (2003).Google Scholar
[28] Li, Y.D., Wang, J.W., Deng, Z.X., Wu, Y.Y., Sun, X.M., Yu, D.P., and Yang, P.D., J. Am.Chem.Soc, 123, 9904 (2001).Google Scholar
[29] Remskar, M., Mrzel, A., Skraba, Z., Jesih, A., Ceh, M., Demsar, J., Stadelmann, P., Levy, F., and Mihailovic, D., Science 292, 479 (2001).Google Scholar
[30] Rao, A. Ranga and Dutta, V. (manuscript under preparation).Google Scholar