Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T03:42:12.340Z Has data issue: false hasContentIssue false

Nano-Structured Materials for Next Generation Fuel Cells and Photoelectrochemical Devices

Published online by Cambridge University Press:  22 June 2011

Harry L. Tuller
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Johanna Engel
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Scott J. Litzelman
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Sean R. Bishop
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Get access

Abstract

Progress in achieving improved performance in the generation and utilization of hydrogen depends on our ability to identify materials with optimized electrical and (photo)- electrochemical performance. Given their high volume fraction of interfaces, high chemical stability and versatility (ionic, electronic, optical property control), nanocrystalline electroceramic materials are of growing interest for advanced energy conversion and storage technologies. As grain size decreases towards the Debye length and grain boundaries come in closer proximity, space charge properties begin to dominate, resulting in modified charge transport. Through systematic variation of grain boundary properties by heterogeneous indiffusion of cations, the electronic and ionic carrier profiles in the space charge region may be altered. The relationships between space charge potential and defect profiles in the space charge regions are quantitatively analyzed, and implications for nano-ionic materials in thin film solid oxide fuel cells are discussed. From the standpoint of photoelectrochemical water splitting for hydrogen generation, optimizing the band gap, band alignments, and transport properties while retaining stability has remained a challenging objective. Novel nanocrystalline composite structures are discussed which exhibit features amenable to optimization of required properties and electrical measurements to determine key transport properties of titanium dioxide nanopowder, a photoanode material are introduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lewis, N. S. and Nocera, D. G., Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).10.1073/pnas.0603395103Google Scholar
3. Tuller, H. L., Litzelman, S. J., and Jung, W., Phys. Chem. Chem. Phys. 11, 3023 (2009).10.1039/b901906eGoogle Scholar
4. Steele, B. C. H., Solid State Ionics 129, 95(2000).10.1016/S0167-2738(99)00319-7Google Scholar
5. Ishihara, T., Matsuda, H., and Takita, Y., J. Am. Chem. Soc. 116, 3801 (1994).10.1021/ja00088a016Google Scholar
6. Bieberle-Huetter, A., Beckel, D., Infortuna, A., Muecke, U. P., Rupp, J. L. M., Gauckler, L. J., Rey-Mermet, S., Muralt, P., Bieri, N. R., Hotz, N., Stutz, M. J., Poulikakos, D., Heeb, P., Mueller, P., Bernard, A., Gmuer, R., and Hocker, T., J. Power Sources 177, 123 (2008).10.1016/j.jpowsour.2007.10.092Google Scholar
7. Bieberle-Hutter, A., Hertz, J. L. and Tuller, H. L., Acta Mater. 56, 177 (2008).10.1016/j.actamat.2007.09.006Google Scholar
8. Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., and Prinz, F. B., J. Electrochem. Soc. 154,B20 (2007).10.1149/1.2372592Google Scholar
9. Tuller, H. L., Litzelman, S. J., and Whitfield, G. C., In Ceramics science and technology: Properties, Vol. 2, edited by Riedel, R. and Chen, I.-W. (Wiley, Weinheim, 2010) p.697.10.1002/9783527631735.ch17Google Scholar
10. Tschope, A. and Birringer, R., J. Electroceram. 7, 169 (2001).10.1023/A:1014483028210Google Scholar
11. Litzelman, S. J., De Souza, R. A., Butz, B., Tuller, H. L., Martin, M., and Gerthsen, D., J. Electroceram. 22, 405 (2009).10.1007/s10832-008-9445-yGoogle Scholar
12. Litzelman, S. J. and Tuller, H.L., Solid State Ionics, 180, 1190 (2009).10.1016/j.ssi.2009.05.013Google Scholar
13. Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., Pennycook, S. J. and Santamaria, J., Science 321, 676 (2008).10.1126/science.1156393Google Scholar
14. Cavallaro, A., Burriel, M., Roqueta, J., Apostolidis, A., Bernardi, A., Tarancon, A., Srinivasan, R., Cook, S. N., Fraser, H. L., Kilner, J. A., McComb, D. W., and Santiso, J., Solid State Ionics 181, 592 (2010).10.1016/j.ssi.2010.03.014Google Scholar
15. Kushima, A. and Yildiz, B., J. Mater. Chem. 20, 4809 (2010).10.1039/c000259cGoogle Scholar
16. Adler, S. B., Chem. Rev. 104, 4791 (2004).10.1021/cr020724oGoogle Scholar
17. Hertz, J. L. and Tuller, H. L., J. Electrochem. Soc. 154, B413 (2007).10.1149/1.2452902Google Scholar
18. Hertz, J. L., Rothschild, A., and Tuller, H. L., J. Electroceram. 22, 428 (2009).10.1007/s10832-008-9475-5Google Scholar
19. Katsiev, K., Yildiz, B., Balasubramaniam, K., and Salvador, P. A., Appl. Phys. Lett. 95, 092106 (2009).10.1063/1.3204022Google Scholar
20. CRC, Handbook of Chemistry and Physics, 91th ed. edited by Haynes, W. M. (CRC Press, 2010) p. 820.Google Scholar
21. van de Krol, R., Liang, Y., and Schoonman, J., J. Mater. Chem. 18, 2311 (2008).10.1039/b718969aGoogle Scholar
22. Bak, T., Nowotny, J., Rekas, M., and Sorrell, C. C., Int. J. Hydrogen Energy 27, 991 (2002).10.1016/S0360-3199(02)00022-8Google Scholar
23. Murphy, A. B., Barnes, P. R. F., Randeniya, L. K., Plumb, I. C., Grey, I. E., Horne, M. D., and Glasscock, J. A., Int. J. Hydrogen Energy 31, 1999 (2006).10.1016/j.ijhydene.2006.01.014Google Scholar
24. Kato, H. and Kudo, A., J. Phys. Chem. B 106, 5029 (2002).10.1021/jp0255482Google Scholar
25. Maruska, H. P. and Ghosh, A. K., Sol. Energy Mater. 1, 237 (1971).10.1016/0165-1633(79)90042-XGoogle Scholar
26. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., Science 293, 269 (2001).10.1126/science.1061051Google Scholar
27. Yagi, M. and Kaneko, M., Chem. Rev. 101, 21 (2001).10.1021/cr980108lGoogle Scholar
28. Brimblecombe, R., Koo, A., Dismukes, G. C., Swiegers, G. F., and Spiccia, L., J. Am. Chem. Soc. 132, 2892 (2010).10.1021/ja910055aGoogle Scholar
29. Tilley, S. D., Cornuz, M., Sivula, K., and Grätzel, M., Angew. Chem. Int. Ed. 49, 6405 (2010).10.1002/anie.201003110Google Scholar
30. Zhong, D. K., Sun, J., Inumaru, H., Gamelin, D. R., J. Am. Chem. Soc. 131, 6068 (2009).Google Scholar
31. Morgan, J.W. and Anders, E., Proc. Natl. Acad. Sci. 77, 6973 (1980).10.1073/pnas.77.12.6973Google Scholar
32. Kanan, M. W. and Nocera, D. G., Science 321, 1072 (2008).10.1126/science.1162018Google Scholar
33. Shankar, K., Basham, J. I., Allam, N. K., Varghese, O. K., Mor, G. K., Feng, X., Paulose, M., Seabold, J. A., Choi, K.-S., and Grimes, C. A., J. Phys. Chem. C 113, 6327 (2009).10.1021/jp809385xGoogle Scholar
34. Yang, P., Yan, R., and Fardy, M., Nano Lett. 10, 1529 (2010).10.1021/nl100665rGoogle Scholar
35. Gratzel, M., Nature 414, 338 (2001).10.1038/35104607Google Scholar
36. Kamat, P.V., J. Phys. Chem. C 111, 2834 (2007).10.1021/jp066952uGoogle Scholar
37. Vayssieres, L., Sathe, C., Butorin, S. M., Shuh, D. K., Nordgren, J., and Guo, J., Adv. Mater. 17, 2320 (2005).10.1002/adma.200500992Google Scholar
38. Vayssieres, L., J. Phys. Chem. C 113, 4733 (2009).10.1021/jp810721fGoogle Scholar
39. Boettcher, S. W., Spurgeon, J. M., Putnam, M. C., Warren, E. L., Turner-Evans, D. B., Kelzenberg, M. D., Maiolo, J. R., Atwarer, H. A., and Lewis, N. S., Science 327, 185 (2010).10.1126/science.1180783Google Scholar
40. Mukherjee, K., Teng, T., Jose, R. and Ramakrishna, S., App. Phys. Lett. 95, 012101 (2009).10.1063/1.3167298Google Scholar
41. Kim, I., Hong, J., Lee, B. H., Kim, D. Y., Jeon, E., Choi, D., and Yang, D., App. Phys. Lett. 91, 163109 (2007).10.1063/1.2799581Google Scholar
42. Beermann, N., Vayssieres, L., Lindquist, S., and Hagfeldt, A., J. Electrochem. Soc. 147, 2456 (2000).10.1149/1.1393553Google Scholar
43. Lin, Y., Zhou, S., Liu, X., Sheehan, S. W., and Wang, D., J. Electrochem. Soc. 131, 2772 (2009).Google Scholar
44. Lin, Y., Zhou, S., Sheehan, S. W., and Wang, D., J. Am. Chem. Soc. 133, 2398 (2011).10.1021/ja110741zGoogle Scholar
45. Hwang, Y. J., Boukai, A., and Yang, P., Nano Lett. 9, 410 (2009).10.1021/nl8032763Google Scholar
46. Knauth, P. and Tuller, H. L., J. App. Phys. 85, 897 (1999).10.1063/1.369208Google Scholar
47. Weibel, A., Bouchet, R., and Knauth, P., Solid State Ionics, 177, 229 (2006).10.1016/j.ssi.2005.11.002Google Scholar
48. Nowotny, M. K., Sheppard, L. R., Bak, T., and Nowotny, J., J. Phys. Chem. C 112, 5275 (2008).10.1021/jp077275mGoogle Scholar
49. Tuller, H. L., Engel, J., and Bishop, S. R., in preparation.Google Scholar
50. Kofstad, P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley Interscience Publication, New York, 1972) p. 142.Google Scholar
51. Marucco, J. F., Gautron, J., and Lemasson, P., J. Phys. Chem. Solids 42 363 (1981).10.1016/0022-3697(81)90043-3Google Scholar