Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T17:00:06.277Z Has data issue: false hasContentIssue false

Nanostructured, ITO-free electrodes for OLED emission control

Published online by Cambridge University Press:  06 June 2014

Arfat Pradana
Affiliation:
Institute of Electrical and Information Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
Christian Kluge
Affiliation:
Institute of Electrical and Information Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
Martina Gerken
Affiliation:
Institute of Electrical and Information Engineering, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
Get access

Abstract

We demonstrated nanostructured, ITO-free anodes in flexible OLEDs using a combination of a composite organic-inorganic UV nanoimprint resist and a conductive, transparent polymer layer. Flexible OLEDs with grating anodes were fabricated on polycarbonate substrates. The nanoimprint resist was blended with 30% TiO2 nanoparticles in order to achieve a sufficient refractive index contrast to the polymer anode. It was periodically structured with a 370-nm period linear photonic crystal structure. PEDOT:PSS was spin-coated on as a polymer anode and structured in an oxygen plasma treatment. For OLED demonstration an organic emission layer (PPV-derivative “Super Yellow”) and a metal cathode (LiF/Al) were deposited. We observed successful waveguide mode extraction both in electroluminescence and photoluminescence for flat and bend substrates. The waveguide mode extraction angle varied slightly under bending. The combination of an inorganic-organic composite material with a conductive polymer transparent electrode is promising for improving the performance of ITO-free, flexible OLEDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buckley, A., editor, Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications (Woodhead Publishing, 2013)10.1533/9780857098948CrossRefGoogle Scholar
Saxena, K., Jain, V.K., and Mehta, D.S., Opt. Mater. (Amst). 32, 221 (2009).10.1016/j.optmat.2009.07.014CrossRefGoogle Scholar
Lupton, J.M., Matterson, B.J., Samuel, I.D.W., Jory, M.J., and Barnes, W.L., Appl. Phys. Lett. 77, 3340 (2000).10.1063/1.1320023CrossRefGoogle Scholar
Fujita, M., Ueno, T., Asano, T., Noda, S., Ohhata, H., Tsuji, T., Nakada, H., and Shimoji, N., Electron. Lett. 39, 1750 (2003).10.1049/el:20031126CrossRefGoogle Scholar
Geyer, U., Hauss, J., Riedel, B., Gleiss, S., Lemmer, U., and Gerken, M., J. Appl. Phys. 104, 093111 (2008).10.1063/1.3014034CrossRefGoogle Scholar
Riedel, B., Hauss, J., Geyer, U., Guetlein, J., Lemmer, U., and Gerken, M., Appl. Phys. Lett. 96, 243302 (2010).10.1063/1.3455098CrossRefGoogle Scholar
Pradana, A., Kluge, C., and Gerken, M., Opt. Mater. Express 4, 329 (2014).10.1364/OME.4.000329CrossRefGoogle Scholar
Kasarova, S.N., Sultanova, N.G., Ivanov, C.D., and Nikolov, I.D., Opt. Mater. (Amst). 29, 1481 (2007).10.1016/j.optmat.2006.07.010CrossRefGoogle Scholar
Gruska, B. and Peters, S., “Organic Light Emitting Diodes (OLED‘ s),“ Sentech Appl. Bull. (n.d.).Google Scholar
Raki&cacute, A.D.;, Appl. Opt. 34, 4755 (1995).Google Scholar
Vosgueritchian, M., Lipomi, D.J., and a Bao, Z., Adv. Funct. Mater. 22, 421 (2012).10.1002/adfm.201101775CrossRefGoogle Scholar
Nardes, A. M., Kemerink, M., de Kok, M.M., Vinken, E., Maturova, K., and Janssen, R. A. J., Org. Electron. 9, 727 (2008).10.1016/j.orgel.2008.05.006CrossRefGoogle Scholar