Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T19:02:32.513Z Has data issue: false hasContentIssue false

Nanosecond Thermal Processing for Ultra-High-Speed Device Technology

Published online by Cambridge University Press:  21 February 2011

Thomas W. Sigmon
Affiliation:
Stanford University, Stanford, CA
Anthony M. McCarthy
Affiliation:
Stanford University, Stanford, CA
CA Kurt H. Weiner
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
Paul G. Carey
Affiliation:
Siemens, Munich, FRD
Get access

Abstract

Progress in high-speed device technology is occurring by both scaling of conventional devices, such as MOSFETs and bipolars, and the development of new device structures which take advantage of multi-layer heterostructures. As scaling in lateral dimensions allows production of devices with dimensions approaching 0.lμm, vertical scaling has become a topic of concern. In this paper we focus on nanosecond thermal processing (NTP), anew area of process technology which uses a pulsed uv-laser to perform selective doping and epitaxy on nanosecond time scales. The rapid thermal cycles and precise control of impurity profiles inherent to the new technique addresses many of the problems faced in vertical scaling for silicon MOS and bipolar structures and in the fabrication of selective heteroepitaxial layers. Following a brief historical overview and description of the process, successful applications in the fabrication of submicron MOSFETs and narrow base bipolar transistors in silicon will be presented. Structural and electrical results will be presented for heteroepitaxial layers fabricated in the GexSi1-x and InxGa1-xAs material systems by the technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Solomon, P.M., Proceedingsof the IEEE, 70 (5), 489, 1986.Google Scholar
2. Deutch, T.F., Ehrlich, D.J., Osgood, R.M. Jr., and Liau, Z.L., Appl. Phys. Lett., 36 (10), 847, 1980.Google Scholar
3. Deutch, T.F., Fan, J.C.C., Turner, G.W., Chapman, R.L., Ehrlich, D.J., and Osgood, R.M. Jr., Appl. Phys. Lett., 38 (3), 144, 1981.Google Scholar
4. Deutch, T.F., Ehrlich, D.J. Rathman, D.D., Silversmith, D.J., and Osgood, R.M. Jr., Appl. Phys. Lett., 39 (10), 825, 1981.Google Scholar
5. Turner, G.B., Tarrant, D., Pollock, G., Pressley, R., and Press, R., Appl. Phys. Lett., 39 (12), 967, 1981.Google Scholar
6. Ibbs, K.G. and Lloyd, M.L., Optics and Laser Technology, p 37, Feb., 1984.Google Scholar
7. Sigmon, T.W., Carey, P.G., Press, R.L., Fahlen, T.S., and Pressley, R. J., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Fan, J.C.C. and Johnson, N.M. (North-Holland, New York, 1984) p.Google Scholar
8. Carey, P.G., Sigmon, T.W., Press, R.L., Fahlen, T.S., Huneke, J.C., and Crouch, R., 1984 IEDM Technical Digest, p. 859, Dec. 1984.Google Scholar
9. Thompson, M.O., Ph.D. disseration, Cornell University, Ithica, New York, 1984.Google Scholar
10. Landi, E., Carey, P.G., and Sigmon, T.W., IEEE Trans. Computer-Aided Design, 7, (2) p. 205, 1988.Google Scholar
11. Wood, R.F., Phys. Rev. B, 25 (4), 2786, 1982.Google Scholar
12. Aziz, M.J., J.Appl. Phys. 53 (2), 1158, 1982.Google Scholar
13. Carey, P.G., Ph.D. disseration, Stanford University, Stanford, CA, 1988.Google Scholar
14. Young, R.T., Narayan, J., Christie, W.H., DerLeaden, G.A. Van, Levatter, J.I. and Chen, L.J., Solid State Technology, 26, 183, 1983.Google Scholar
15. Slaoui, A., Foulon, F., Bianconi, M., Correra, L., Nipotti, R., Stuck, R., Unamuno, S, Fogarassy, E. and Nicoletti, S., in MaterialsResearch Society Symp. Proc. Vol. 129, edited by Johnson, A.W., Loper, G.L., Sigmon, T.W., to be published.Google Scholar
16 Carey, P.G., Bezjian, K., Sigmon, T.W., and Gildea, P., IEEE Electron.Device Lett., EDL–7 (7), 440, 1986.Google Scholar
17. Carey, P.G., Weiner, K.H., and Sigmon, T.W., IEEE Electron. Device Lett., EDL–9 (10), 542, 1988.Google Scholar
18. Weiner, K.H. and Sigmon, T.W., IEEE Electron.Device Lett., EDL–10 (6), 260, 1989.Google Scholar
19. Abelson, J.R., Sigmon, T.W., Kim, K.B., and Weiner, K.H., Appl. Phys. Lett., 52 (3), 230, 1988.Google Scholar
20. Chang, Y. and Sigmon, T.W., submitted to Appl. Phys. Lett. Google Scholar