Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T16:42:07.064Z Has data issue: false hasContentIssue false

Nanoscale Structure/Property Correlation Through Aberration-Corrected Stem And Theory

Published online by Cambridge University Press:  11 February 2011

S.J. Pennycook
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
A. R. Lupini
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
M. Varela
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
A. Borisevich
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
M. F. Chisholm
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
E. Abe
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Japan
N. Dellby
Affiliation:
Nion Co., 1102 8th Street, Kirkland, WA
O.L. Krivanek
Affiliation:
Nion Co., 1102 8th Street, Kirkland, WA
P. D. Nellist
Affiliation:
Nion Co., 1102 8th Street, Kirkland, WA
L. G. Wang
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
R. Buczko
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Department of Physics and Astronomy, Vanderbilt University, Nashville, TN Institute of Physics, Polish Academy of Sciences, 02–668 Warsaw, Poland
X. Fan
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
S. T. Pantelides
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
Get access

Extract

The combination of atomic-resolution Z-contrast microscopy, electron energy loss spectroscopy and first-principles theory has proved to be a powerful means for structure property correlations at interfaces and nanostructures. The scanning transmission electron microscope (STEM) now routinely provides atomic-sized electron beams, allowing simultaneous Z-contrast imaging and EELS as shown in Fig. 1. The feasiblity of correcting the inherently large spherical aberration of microscope objective lenses promises to at least double the achievable resolution. The potential benefits for the STEM, however, may turn out to be much greater than those for the conventional TEM because it is very much less sensitive to chromatic instabilities. The 100 kV VG Microscopes HB501UX at Oak Ridge National Laboratory (ORNL) is now fitted with an aberration corrector constructed by Nion Co., which improved its resolution from 2.2 Å (full-width-half-maximum probe intensity) to around 1.3 Å. It is now very comparable in performance to the uncorrected 300 kV HB603U STEM at ORNL which, before correction, also had a directly interpretable resolution of 1.3 Å, although information transfer had been demonstrated down to 0.78 Å8. Initial results after installing an aberration corrector on the 300 kV STEM indicate a resolution of 0.84 Å. The theoretically achievable probe size in the absence of instabilities is predicted to be 0.5 Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pennycook, S. J., Duscher, G., Buczko, R., Kim, M., Browning, N. D. and Pantelides, S. T., in Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd. 2313 (2001).Google Scholar
2 Fan, X., Dickey, E. C., Eklund, P., Williams, K. A., Grigorian, L., Buczko, R. S., Pantelides, S. T. and Pennycook, S. J., Phys. Rev. Lett. 84, 4621 (2000).Google Scholar
3 Buczko, R., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 84, 943 (2000).Google Scholar
4 Kim, M., Duscher, G., Browning, N.D., Sohlberg, K., Pantelides, S.T., and Pennycook, S.J., Phys. Rev. Lett. 86, 4056 (2001).Google Scholar
5 James, E. M., Browning, N. D., Nicholls, A. W., Kawasaki, M., Xin, Y., and Stemmer, S., J. Elect. Micr. 47, 561 (1998).Google Scholar
6 Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. and Urban, K., Nature 392, 768 (1998).Google Scholar
7 Krivanek, O. L., Dellby, N. and Lupini, A., Ultramicroscopy, 78, 1 (1999).Google Scholar
8 Nellist, P. D. and Pennycook, S. J., Phys. Rev. Lett. 81, 4156 (1998).Google Scholar
9 Pennycook, S. J. and Nellist, P. D. In: Rickerby, D. G., Valdré, U. and Valdré, G. (eds.) Impact of Electron and Scanning Probe Microscopy on Materials Research, Kluwer Academic Publisers, The Netherlands, 161 (1999).Google Scholar
10 Nellist, P. D. and Pennycook, S. J., in Hawkes, P. W. (ed.) Advances in Imaging and Electron Physics, Academic Press 113, 148 (2000).Google Scholar
11 Pennycook, S. J., in Hawkes, P. W. (ed.) Advances in Imaging and Electron Physics, Academic Press 123, 173 (2002).Google Scholar
12 McGibbon, A. J., Pennycook, S. J., and Angelo, J. E., Science 269, 519 (1995).Google Scholar
13 McGibbon, M. M., Browning, N. D., Chisholm, M. F., McGibbon, A. J., and Pennycook, S. J., Ravikumar, V., and Dravid, V. P., Science 266, 102 (1994).Google Scholar
14 Chisholm, M. F. and Pennycook, S. J.. Mater. Res. Soc. Bull. 22, 53 (1997)Google Scholar
15 Browning, N. D., Chisholm, M. F., and Pennycook, S. J., Nature 366, 143 (1993).Google Scholar
16 Duscher, G., Browning, N. D., and Pennycook, S. J., Phys. Stat. Sol. (a ) 166, 327 (1998).Google Scholar
17 Chisholm, M. F., Maiti, A., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 81, 132 (1998).Google Scholar
18 Yan, Y., Chisholm, M. F., Duscher, G., Maiti, A., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 81, 3675 (1998).Google Scholar
19 Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1954).Google Scholar
20 Perdew, J. P. et. al., Phys. Rev. B 46, 6671 (1992).Google Scholar
21 Vanderbilt, D., Phys. Rev. B41, 7892 (1990).Google Scholar
22 Shiang, J. J., Kadavanich, A. V., Grubbs, R. K. and Alivisatos, A. P., J. Phys. Chem. 99, 17417 (1995).Google Scholar
23 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B13, 5188 (1976).Google Scholar
24 Voyles, P. M., et al., Nature, 416, 826 (2002).Google Scholar
25 Lupini, A. R. and Pennycook, S. J., Ultramicroscopy, in press.Google Scholar
26 Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
27 Kadavanich, Andreas V., Kippeny, Tadd C., Erwin, Meg M., Pennycook, Stephen J., and Rosenthal, Sandra J., J. Phys. Chem. B105, 361 (2001).Google Scholar
28 Wang, L. W. and Zunger, A., Phys. Rev. B 53, 9579 (1996).Google Scholar
29 Wang, L. G., Pennycook, S. J. and Pantelides, S. T., Phys. Rev. Lett, 89, 075506 (2002).Google Scholar
30 Fan, X., Buczko, R., Puretzky, A. A., Geohegan, D. B., Howe, J. Y., Pantelides, S. T. and Pennycook, S. J., Phys. Rev. Lett, in press (2002).Google Scholar
31 Pennycook, S. J., Rafferty, B. and Nellist, P. D., Microsc. Microanal. 6, 34 (2000).Google Scholar
32 Nellist, P. D., and Pennycook, S. J., Science 274, 413 (1996).Google Scholar