Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:22:31.999Z Has data issue: false hasContentIssue false

Nanoscale Structural Features of Ultra-fine Zirconia Powders Obtained Via Precipitation-hydrothermal Treatment Route

Published online by Cambridge University Press:  15 February 2011

Vladislav A. Sadykov
Affiliation:
Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia;
Vladimir I. Zaikovskii
Affiliation:
Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia;
Dmitrii A. Zyuzin
Affiliation:
Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia;
Ella M. Moroz
Affiliation:
Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia;
Elena B. Burgina
Affiliation:
Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva, 5, 630090, Novosibirsk, Russia;
Arcady V. Ishchenko
Affiliation:
Novosibirsk State University, Novosibirsk, Russia;
Vitaly G. Kostrovskii
Affiliation:
Institute of Solid State Chemistry SB RAS, Novosibirsk, Russia.
Valerii A. Matyshak
Affiliation:
Semenov Institute of Chemical Physics RAS, Moscow, Russia.
Get access

Abstract

Genesis of the structure of zirconia fine particles prepared by precipitation of amorphous hydrated zirconia by ammonia from the ZrO(NO3)2 solution followed by a mild hydrothermal treatment (HTT) of precipitate, washing and calcination under air up to 1000 °C has been studied by HRTEM, X-ray diffraction, Raman and FTIRS. HTT rearranges the structure of amorphous zirconia, which helps to obtain nearly single-phase monoclinic nanozirconia (particle size 5-15 nm) after a mild calcination at 500 °C. Dehydroxilation and sintering of these nanoparticles at higher (600-650 °C) temperatures generate polysynthetic (001) twins. Modeling revealed that reappearance of the (111) “cubic” reflex in XRD patterns of samples calcined at 600-650 °C can be due to these extended defects. In their vicinity, the seven-fold Zr-O coordination sphere is retained, while packing of ZrO7 polyhedra is varied towards more symmetric structures, thus causing disappearance of the Raman spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Goodenough, J.B., Nature 404, 821 (2000).Google Scholar
2 Chuah, G.K., Jaenicke, S., and Pong, B.K., J. Catal. 175, 80 (1998).Google Scholar
3 Shukla, S., and Seal, S., J. Phys. Chem. B 108, 3395 (2004).Google Scholar
4 Sureh, A., Mayo, M. J., and Porter, W.C., J. Mater. Res. 18, 2912 (2003).Google Scholar
5 Pacheco, G. and Fripiat, J.J., J. Phys. Chem. B 104, 11906 (2000).Google Scholar
6 Sadykov, V.A., Lunin, V.V., Matyshak, V.A., Paukshtis, E.A., Rozovskii, A. Ya. and J.Ross, R.H., Kinet. Catal. 44, 379 (2003).Google Scholar
7 Konin, G.A, Il'ichev, A.N., Matyshak, V.A., Khomenko, T.I., Korchak, V.N., Sadykov, V.A., Doronin, V.P., Bunina, R.V., Alikina, G.M., Kuznetsova, T.G., Paukshtis, E.A., Fenelonov, V.B., Zaikovskii, V.I., Rozovskii, A. Ya., Top. Catal. 17, 193 (2001).Google Scholar
8 Katz, G., J. Am. Ceram. Soc. 54, 531 (1971).Google Scholar
9 Cherepanova, S.V., Tsybulya, S.V., J. Molec. Catal. 158, 263 (2000).Google Scholar
10 Garvie, R.C., J. Phys. Chem. 82, 218 (1978).Google Scholar
11 Oleinikov, N.N., Pentin, I.V., Muravyeva, G.P., and Ketsko, V.A., Zh. Neorg. Khim. 46, 1413 (2001).Google Scholar
12 Depero, L.E. and Levrangi, P., J. Solid State Chem. 10, 190 (1994).Google Scholar
13 Smith, K., and Newkirk, H.W., Acta Cryst. 18, 983 (1965).Google Scholar
14 Zyuzin, D.A., Cherepanova, S.V., Moroz, E.M., Burgina, E.B., Kostrovskii, V.G., Sadykov, V.A., Matyshak, V.A., to be published.Google Scholar
15 Phillippi, C. M., Mazdiyasni, K. S., J. Amer. Ceram. Soc. 54, 254 (1971).Google Scholar
16 Sadykov, V.A., Kuznetsova, T.G., Alikina, G.M., Frolova, Y.V., Lukashevich, A.I., Potapova, Y.V., Muzykantov, V.S., Rogov, V.A., Kriventsov, V.V., Kochubei, D.I., Moroz, E.M., Zyuzin, D.I., Zaikovskii, V.I., Kolomiichuk, V.N., Paukshtis, E.A., Burgina, E.B., Zyryanov, V.V., Uvarov, N.F., Neophytides, S., Kemnitz, E.. Catal. Today 93-95, 45 (2004).Google Scholar
17 Clearfield, A., Inorg. Chemn. 3, 146 (1964).Google Scholar