Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:34:55.087Z Has data issue: false hasContentIssue false

Nanoscale Observation of the Distribution Polarization in Lithium Niobate Thin Films

Published online by Cambridge University Press:  02 August 2012

Dmitry A. Kiselev
Affiliation:
National University of Science and Technology “MISiS”, 119049 Moscow, Leninskiy pr. 4, Russian Federation
Roman N. Zhukov
Affiliation:
National University of Science and Technology “MISiS”, 119049 Moscow, Leninskiy pr. 4, Russian Federation
Alexander S. Bykov
Affiliation:
National University of Science and Technology “MISiS”, 119049 Moscow, Leninskiy pr. 4, Russian Federation
Mikhail D. Malinkovich
Affiliation:
National University of Science and Technology “MISiS”, 119049 Moscow, Leninskiy pr. 4, Russian Federation
Yuriy N. Parkhomenko
Affiliation:
National University of Science and Technology “MISiS”, 119049 Moscow, Leninskiy pr. 4, Russian Federation
Get access

Abstract

In this work, an Atomic Force Microscope in the so-called Piezoresponse mode and Kelvin mode is used to image the grains, ferroelectric domains and surface potential in lithium niobate thin films. A RF magnetron sputter system was used to deposit LiNbO3 thin films on (100)-oriented Si substrates with SiO2 layer. The surface of the sample shows small grains which diameter ranges from 70 nm to 150 nm and roughness is less than 13 nm. Using the electric field from a biased conducting AFM tip, we show that possible to form and subsequently to visualize ferroelectric state. Also, we report surface charge retention on ferroelectric thin films by Kelvin probe microscope in comparison with the piezoresponse signal.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, Q., Kim, C. H., Jang, Y. H., Hwang, H. J., and Cho, J. H., Appl. Phys. Lett. 96, 152901 (2010).10.1063/1.3391667Google Scholar
2. Kalinin, S. V. and Bonnell, D. A., Nano Lett. 4, 555 (2004).10.1021/nl0350837Google Scholar
3. Yan, F., Xing, G. Z., Islam, M., Li, S., and Lu, L., Appl. Phys. Lett. 100, 172901 (2012)10.1063/1.4705405Google Scholar
4. Kim, Y., Bae, C., Ryu, K., Ko, H., Kim, Y. K., Hong, S., and Shin, H., Appl. Phys. Lett. 94, 032907 (2009).10.1063/1.3046786Google Scholar
5. Gautier, B., Bornand, V., Thin Solid Films. 515, 1592 (2006).10.1016/j.tsf.2006.05.051Google Scholar
6. Bornand, V., Gautier, B., Papet, Ph., Mater. Chem. and Phys. 86, 340 (2004)10.1016/j.matchemphys.2004.03.018Google Scholar
7. Bornand, V., Papet, Ph., Ferroelectrics 288, 187 (2003).10.1080/00150190390211756Google Scholar
8. Zhukov, R.N., Kiselev, D.A., Malinkovich, M.D., Parkhomenko, Yu.N., Vigovskaya, E.A., Toropova, O.V.,Materials of Electronic Technics 4, 12 (2011) (in Russian).Google Scholar
9. Shin, H., Eugene Pak, Y., Hong, S., No, Kwangsoo, SPIE 3675, 0277 (1999).Google Scholar
10. Hong, S., Woo, J., Shin, H., Jeon, J. U., Pak, Y. E., Colla, E. L., Setter, N., Kim, E., No, K., Jour. Appl. Phys. 89, 1377 (2001).10.1063/1.1331654Google Scholar
11. Gautier, B., Duclereb, J.-R., Guilloux-Viry, M., Appl. Surf. Sci. 217, 108 (2003).10.1016/S0169-4332(03)00529-4Google Scholar