Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:05:04.480Z Has data issue: false hasContentIssue false

Nanoscale Heat Transport through Epitaxial Ultrathin Hetero Films: Bi(111)/Si(001) and Bi(111)/Si(111)

Published online by Cambridge University Press:  06 March 2012

Anja Hanisch-Blicharski
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Simone Wall
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Annika Kalus
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Tim Frigge
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Michael Horn- von Hoegen
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Get access

Abstract

The cooling process of ultrathin hetero films upon excitation with short laser pulses was studied for epitaxial Bi(111) films on Si(001) and Si(111) substrates by means of the Debye-Waller effect with ultrafast electron diffraction. From the exponential decay of the temperature, a cooling time constant was determined as a function of thickness for both substrates. For Bi/Si(111), a linear dependence between the decay constant and thickness was observed, even for 2.8 nm thin films , as predicted from the diffuse mismatch model (DMM) and the acoustic mismatch model (AMM). However, with Bi/Si(001), a significant deviation from this linear dependence was observed for film thicknesses below 5 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R. and Phillpot, S. R., J. Appl. Phys., 93, 793 (2003).Google Scholar
2. Swartz, E. T. and Pohl, R. O., Rev. Mod. Phys., 61, 605 (1989).Google Scholar
3. Stoner, R. J. and Maris, H. J., Phys. Rev. B, 48, 16373 (1993).Google Scholar
4. Krenzer, B., Hanisch, A., Duvenbeck, A., Rethfeld, B. and Horn- von Hoegen, M., J. Nanomaterials, ID 590609 (2008).Google Scholar
5. Krenzer, B., Janzen, A., Zhou, P., von der Linde, D. and Horn-von Hoegen, M., New J. Phys., 8, 190 (2006).Google Scholar
6. Kury, P., Hild, R., Thien, D., Günter, H.-L., Meyer zu Heringdorf, F.-J. and Horn von Hoegen, M., Rev. Sci. Instrum., 76, 083906 (2005).Google Scholar
7. Nagao, T., Sadowski, J. T., Saito, M., Yaginuma, S., Fujikawa, Y., Kogure, T., Ohno, T., Hasegawa, Y., Hasegawa, S. and Sakurai, T., Phys. Rev. Lett. 93, 105501 (2004).Google Scholar
8. Jnawali, G., Hattab, H., Krenzer, B. and Horn- von Hoegen, M., Phys. Rev. B, 74, 195340 (2006).Google Scholar
9. Janzen, A., Krenzer, B., Zhou, P., von der Linde, D. and Horn-von Hoegen, M., Surf. Sci., 600, 4094 (2006).Google Scholar
10. Yaginuma, S., Nagao, T., Sadowski, J. T., Pucci, A. and Sakurai, T., Surf. Sci. 547, L877 (2003).Google Scholar
11. Kammler, M. and Horn-von Hoegen, M., Surf. Sci., 576, 56 (2005).Google Scholar
12. Hanisch, A., Krenzer, B., Pelka, T., Möllenbeck, S. and Horn- von Hoegen, M., Phys. Rev. B, 77, 125410 (2008).Google Scholar
13. Murphy, E. A., Elsayed-Ali, H. E. and Herman, J. W., Phys. Rev. B, 48, 4921 (1993).Google Scholar
14. Janzen, A., Krenzer, B., Heinz, O., Zhou, P., Thien, D., Hanisch, A., Meyer zu Heringdorf, F.-J., von der Linde, D. and Horn- von Hoegen, M., Rev. Sci. Instrum., 78, 013906 (2007).Google Scholar
15. Elsayed-Ali, H. E. and Herman, J. W., Appl. Phys. Lett., 57, 1508 (1990).Google Scholar
16. Bannani, A., Bobisch, C. A., and Möller, R., Appl. Phys. Lett., 93, 032111 (2008).Google Scholar
17. Miklowittz, J., The Theory of Elastic Waves and Waveguides , North Holland, Amsterdam, 1978 Google Scholar