Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T03:59:45.405Z Has data issue: false hasContentIssue false

Nanoporous Materials Integration Into Advanced Microprocessors

Published online by Cambridge University Press:  01 February 2011

Get access

Abstract

Future microprocessor technologies will require interlayer dielectric (ILD) materials with a dielectric constant (κ-value) less than 2.5. Organosilicate glass (OSG) materials must be nanoporous to meet this demand. However, the introduction of nanopores creates many integration challenges. These challenges include 1) integrating nanoporous films with low mechanical strength into conventional process flows, 2) managing etch profiles, 3) processinduced damage to the nanoporous ILD, and 4) controlling the metal/nanoporous ILD interface. This paper reviews research to maximize mechanical strength by engineering optimal pore structures, controlling trench bottom roughness induced by etching and understanding its relationship to pore size, repairing plasma damage using silylation chemistry, and sealing a nanoporous surface for barrier metal (liner) deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, W.W. and Ho, P.S.. MRS Bulletin. 22, 19 (1997).Google Scholar
2. Yan, Y.et al. Adv. Mater. 13(19), 1463 (2001).Google Scholar
3. Li, S., Sun, J., Li, Z., Peng, H., Gidley, D., Ryan, E. T., and Yan, Y. J. Phys. Chem. B, 108, 11689 (2004).Google Scholar
4. Ryan, E.T., Martin, J., Junker, K., Wetzel, J., Sun, J.N., and Gidley, D.W. J. Mat. Res. 16(12), 3335 (2001); J.N. Sun, D.W. Gidley, Y. Hu, W. E. Frieze, and E.T. Ryan. Appl. Phys. Lett. 81(8), 1447 (2002).Google Scholar
5. Chang, T.C., Liu, P.T., Mor, Y.S., Sze, S.M., Yang, Y.L., Feng, M.S., Pan, F.M., Dai, B.T., and Chang, C.Y., J. Electrochem. Soc. 146(10), 3802 (1999); P.T. Liu, T.C. Chang, Y.S. Mor, and S.M. Sze, Jpn. J. Appl. Phys. 38, 3482 (1999); P.T. Liu, T.C. Chang, Y.L. Yang, Y.F. Cheng, and S.M. Sze, IEEE Trans. Elect. Dev. 47(9), 1733 (2000).Google Scholar
6. Worsley, M.A., Bent, S.F., Gates, S.M., Fuller, N., Volksen, W., Steen, M., and Dalton, T.. JVST (in press).Google Scholar
7. Mor, Y.S.et al. J. Vac. Sci. Technol. B 20(4), 1334 (2002); S. Nitta, et al. AVS, 2003.Google Scholar
8. Unpublished resultsGoogle Scholar
9. Ryan, E.T., Ho, H.M., Wu, W.L., Ho, P.S., Gidley, D.W., and Drage, J.. Proceedings of the IEEE International Interconnect Technology Conference. (Cat. No.99EX247), 187 (1999).Google Scholar
10. Sun, J.N., Hu, Y., Frieze, W.E., Chen, W., and Gidley, D.W. J. Electrochem. Soc. 150 (5), F97 (2003).Google Scholar
11. Abell, T. and Maex, K.. Microelect. Engin. 76, 16 (2004).Google Scholar
12. Hu, B.K., Pfeifer, K., and Shue, W.. 2003 Advanced Metallization Conference, 421 (2004).Google Scholar
13. Jacobs, T.et al. Proceedings of the IEEE 2003 International Interconnect Technology Conference. 236 (2002).Google Scholar
14. Ryan, E. Todd, Freeman, M., Svedberg, L., Yu, K., Lee, J.J., Guenther, T., Connor, J., Gidley, D.W., and Sun, J.N.. Mat. Res. Soc. Symp. Proc. 766, E10.8.1 (2003).Google Scholar
15. Caluwaerts, R.et al. Proceedings of the IEEE 2003 International Interconnect Technology Conference. (Cat. No. 03TH8695), 242 (2003).Google Scholar
16. Rossnagel, S. and Kim, H.. AVS, 2003.Google Scholar