Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T07:29:50.459Z Has data issue: false hasContentIssue false

Nanoporous Anodic Alumina as Template and Mask for Functional Nanostructures Fabrication

Published online by Cambridge University Press:  01 February 2011

Manuel Hernández-Vélez
Affiliation:
[email protected], Universidad Autónoma de Madrid, Departamento de Física Aplicada, Madrid, Spain
R Sanz
Affiliation:
[email protected], NANOATE, Director, Madrid, Madrid, Spain
Miguel Manso
Affiliation:
[email protected], Autonoma University, Applied Physics, Madrid, Madrid, Spain
O Sanchez
Affiliation:
[email protected], ICMM-CSIC, Thin Films, Coatings and Nanostructures, Madrid, Madrid, Spain
O de Melo
Affiliation:
[email protected], Havana University, Applied Physics, Havana, Havana, Cuba
Agustina Asenjo
Affiliation:
[email protected], ICMM-CSIC, Magnetism, Magnetic Materials and Transport, Madrid, Madrid, Spain
I. Minguez-Bacho
Affiliation:
[email protected], ICMM-CSIC, Magnetism, Magnetic Materials and Transport, Madrid, Madrid, Spain
Manuel Vázquez
Affiliation:
[email protected], ICMM-CSIC, Magnetism, Magnetic Materials and Transport, Madrid, Madrid, Spain
Get access

Abstract

Nanoporous Anodic Alumina Films (NAAF) have been used for growing a lot of nanostructure functional materials. Of particular interest is the NAAF conversion into membranes (NAAM) with different highly controlled pore diameter and distribution to be used as templates and masks to grow a wide variety of nanomaterials. This work constitutes an approach to a review of our latest results regarding the use of NAAF and NAAM as templates in which II-VI semiconductor, functional oxides, hard materials and magnetic nanowires have been grown. The growth techniques and methods used include Isothermal Close Space Sublimation (ICSS), Magnetron Sputtering, electroplating and sol-gel. Ion Beam Irradiation (IBI) combined with different NAAM as masks has been also used for Titania substrates functionalization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lei, Y. Cai, W. and Wilde, G. Prog. Mater. Sci. 52, (2007) 465).Google Scholar
2 Hernández-Vélez, M., Pirota, K. R. Pászti, F., Navas, D. Climent, A. and Vázquez, M., Appl. Phys. A80 1701 (2005)Google Scholar
3 Vazquez, M. Nielsch, K. Vargas, P. Velázquez, J., Navas, D. Pirota, K. Hernández-Vélez, M., Vogel, E. Cartes, J. Wehrspohn, R.B. Gösele, U., Phys. B343 (2004) 395.Google Scholar
4 Navas, D. Asenjo, A. Jaafar, M. Pirota, K.R. M. Hernández-Vélez, Sanz, R. Lee, W. Nielsch, K., Batallán, F. and Vazquez, M. J. Magn. Magn. Mater., 290291, 191 (2005).Google Scholar
5 Larramendi, E. Purón, E., Hernández, L. C., Sánchez, M., Roux, S. De, Melo, O. de, Romero-Paredes, G., Peña-Sierra, R., Tamura, M. J. Cryst. Growth 223, 447 (2001).Google Scholar
6 Sanz, R. Johansson, A. Skupinski, M. Jensen, J. Possnert, G. Boman, M. Vazquez, M. and Hjort, K., Nano Lett. 6, (2006), 1065 Google Scholar
7 Masuda, H. Kanezawa, K. Nakao, M. Yokoo, A. Tamamura, T. Sugiura, T. Minoura, H. and Nishio, K., Adv. Mater. 15 159 (2003)Google Scholar
8 Sanz, R. Jaafar, M. Asenjo, A. M. Vázquez, M. Hernández-Vélez, Jensen, J. accepted to be published, Nanotechnology, 2010.Google Scholar
9 Skupinski, M. Hjort, K. Sanz, R. and Jensen, J. Nucl. Instr. & Meth. Phys. Res. B266, (2008), 3113.Google Scholar
10 Sanz, R. Jensen, J. Johansson, A. Skupinski, M. Possnert, G. Boman, M. Hernández-Vélez, M., Vázquez, M. and Hjort, K. K Nanotechnology 18, (2007), 305303 Google Scholar
11 Choi, Y, Hong, S and Lee L, P Nano Lett. 9, (2009), 3726 Google Scholar