Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:47:51.406Z Has data issue: false hasContentIssue false

Nanophase Composites Produced by Ion Implantation: Properties, Problems, and Potential

Published online by Cambridge University Press:  21 March 2011

A. Meldrum
Affiliation:
Department of Physics, University of Alberta, Edmonton, AB T6G 2J1Canada
L. A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, U.S.A.
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, U.S.A.
R. F. Haglund Jr.
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235, U.S.A.
Get access

Abstract

Ion implantation has become a versatile and powerful technique for synthesizing nanometer-scale clusters and crystals embedded in the near-surface region of a variety of hosts. The resulting nanocomposite materials often show unique optical, magnetic, and electronic properties. Here we review some of the principal features of this nanophase materials synthesis technique and discuss the outstanding experimental difficulties that currently hamper the development of devices based on the many unique properties of these nanocomposite materials. Possible solutions to these problems and future research directions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meldrum, A., Haglund, R.F. Jr., Boatner, L.A., and White, C.W., Adv. Mater. (in press).Google Scholar
2. Arnold, G. W. and Borders, J. A., J. Appl. Phys. 48, 1488 (1977).Google Scholar
3. Yang, L., Osborne, D. H., Haglund, R. F. Jr., Magruder, R. H., White, C. W., Zuhr, R. A, and Hosono, H., Appl. Phys. A 62, 403 (1996).Google Scholar
4. Haglund, R. F. Jr., Yang, L., Magruder, R. H. III, White, C. W., Zuhr, R. A., Yang, L., Dorsinville, R., and Alfano, R. R., Nucl. Instr. Meth. B91, 493 (1994).Google Scholar
5. V. Halté, Guille, J., Merle, J.-C., Perakis, I., and Bigot, J.-Y., Phys. Rev. B 60, 11738 (1999).Google Scholar
6. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature 370, 354 (1994).Google Scholar
7. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., and McEuen, P. L., Nature 389, 699 (1997).Google Scholar
8. Guo, L., Leobandung, E., and Chou, S. Y., Appl. Phys. Lett. 70, 850 (1997).Google Scholar
9. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E.F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
10. Tiwari, S., Rana, F., Chan, K., Shi, L., and Hanafi, H., Appl. Phys. Lett. 69, 1232 (1996).Google Scholar
11. Coffa, S., Castagna, E., Bongiorno, C., and Patti, D., Nucl. Instr. Meth. (in press).Google Scholar
12. Gea, L. A., Budai, J. D., and Boatner, L. A., J. Mater. Res. 14, 2602 (1999).Google Scholar
13. Lalic, N. and Linnros, J., J. Lumin. 80, 263 (1999).Google Scholar
14. Gea, L. A., Budai, J. D., and Boatner, L. A., J. Mater. Res. 14, 2602 (1999).Google Scholar
15. Meldrum, A., Boatner, L. A., White, C. W., and Ewing, R. C., Mater. Res. Innovat. 3, 190 (2000).Google Scholar
16. Meldrum, A., Sonder, E., Zuhr, R.A., Anderson, I.M., Budai, J.D., White, C.W., and Boatner, L.A. Henderson, D.O., J. Mater. Res. 14, 4489 (1999).Google Scholar
17. Cattaruzza, E., Battaglin, G., Polloni, R., Cesca, T., Gonella, F., Mattei, G., Maurizio, C., Mazzoldi, P., D'Acapito, F., Zontone, F., and Bertoncello, R., Nucl. Instr. Meth. B148, 1007 (1999).Google Scholar
18. Meldrum, A., Sonder, E., Zuhr, R. A., Anderson, I. M., Budai, J. D., White, C. W., Boatner, L. A., and Henderson, D. O., J. Mater. Res. 14, 4489 (1999).Google Scholar
19. Honda, S., Modine, F. A., Meldrum, A., Budai, J. D., Haynes, T. E., and Boatner, L. A., Appl. Phys. Lett. 77, 711 (2000).Google Scholar
20. Honda, S., Modine, F. A., Haynes, T. E., Meldrum, A., Budai, J. D., Song, K. J., Thompson, J. R., and Boatner, L. A., Mat. Res. Soc. Symp. Proc. 581, 71 (2000).Google Scholar
21. Lambeth, D. N., Velu, E.M.T., Bellesis, G. H., Lee, L. L., and Laughlin, D. E., J. Appl. Phys. 79, 4496 (1996).Google Scholar
22. White, C. W., Withrow, S. P., Meldrum, A., Budai, J. D., Hembree, D. M., Zhu, J. G., Henderson, D. O., and Prawer, S., Mat. Res. Soc. Symp. Proc. 507, 249 (1998).Google Scholar
23. López, M., Garrido, B., Bonafos, C., Pérez-Rodríguez, A., Morante, J. R., and Claverie, A., Nucl. Instr. Meth. B (in press).Google Scholar
24. Zuhr, R. A., Budai, J. D., Datskos, P. G., Egert, C. M., Meldrum, A., Thomas, K. A., White, C. W., Feldman, L. C., Strobel, M., and Heinig, K-H., Mat. Res. Soc. Symp. Proc. 536, 251 (1999).Google Scholar
25. Haglund, R. F. Jr., In Optics of Small Particles, Surfaces and Interfaces, edited by Hummel, R.E. and Wiβmuth, Peter (Boca Raton, FL: CRC Press, 1997) 191231.Google Scholar
26. Devolder, T., Chappert, C., Mathet, V., Bernas, H., Chen, Y., Janet, J. P., and Ferré, J., J. Appl. Phys. 87, 8671 (2000).Google Scholar
27. Allen, C.W. and Ryan, E.A., Mat. Res. Soc. Symp. Proc. 439, 277 (1997).Google Scholar
28. Valentin, E., Bernas, H., Ricolleau, C., and Creuzet, F., Nucl. Instr. Meth. (in press).Google Scholar
29. Ila, D., Williams, E.K., Smith, C.C., Poker, D.B., Hensley, D.K., Klatt, C., and Kalbitzer, S., Nucl. Instr. Meth. Phys. Res. B 148, 1012 (1999).Google Scholar
30. Nakajima, A., Futatsugi, T., Horiguchi, N., and Yokoyama, N., Appl. Phys. Lett. 71, 3652 (1997).Google Scholar