Article contents
Nano-patterned Growth of Ge Quantum Dots for Infrared Detector Applications
Published online by Cambridge University Press: 01 February 2011
Abstract
Quantum dot infrared photodetectors (QDIPs) have been studied widely for normal-incidence infrared detection. The 3D confinement provided by quantum dots allows for the elimination of gratings that are typically required for normal-incidence detection in quantum well infrared photodetectors (QWIPs). Furthermore, the growth of Ge dots on Si substrates offers the potential for integration with existing CMOS platforms. To date, however, Ge QDIPs have typically been grown epitaxially by Stranski-Krastonov growth – producing pancake-like dots with base dimensions of 50-100 nm, heights of 7-10 nm, and an aerial dot density of 109–1010 cm−2. Such dots have poor lateral confinement, causing them to have non-ideal normal-incidence absorption characteristics, similar to quantum wells. In this work, we demonstrate infrared absorption in Ge dots with base dimensions of approximately 15 nm. These dots are epitaxially grown on pre-patterned Si substrates, with an aerial dot density of approximately 1011 cm−2. The substrates are prepared by using diblock copolymers to create a nano-pattern on the substrate surface which is transferred to the substrate by dry etching. The size of this pattern determines the base dimensions of the Ge dots. After growth, these dots are then tested for their infrared absorption properties using Fourier Transform Infrared (FTIR) Spectroscopy. The normal-incidence absorption of the dots can be studied with FTIR by varying the polarization angle of the infrared light. We present FTIR absorption spectra for samples grown with various conditions (e.g., different dot doping levels, numbers of layers, and dot base dimensions) and investigate the effects of different growth conditions on infrared absorption properties. We also report on the normal-incidence absorption characteristics of these dots by presenting absorption spectra for various polarization angles of infrared light.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
REFERENCES
- 1
- Cited by