Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T23:17:07.219Z Has data issue: false hasContentIssue false

Nanometric Surface Patterns for Tissue Engineering: Fabrication and Biocompatibility in Vitro

Published online by Cambridge University Press:  15 March 2011

M Riehle*
Affiliation:
Centre for Cell Engineering, IBLS, University of Glasgow, Glasgow, UK
M Dalby
Affiliation:
Centre for Cell Engineering, IBLS, University of Glasgow, Glasgow, UK
H Johnstone
Affiliation:
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
J Gallagher
Affiliation:
Centre for Cell Engineering, IBLS, University of Glasgow, Glasgow, UK
M A Wood
Affiliation:
Centre for Cell Engineering, IBLS, University of Glasgow, Glasgow, UK
B Casey
Affiliation:
Department of Electronic Engineering, University of Glasgow, Glasgow, UK
K McGhee
Affiliation:
Department of Electronic Engineering, University of Glasgow, Glasgow, UK
S Affrossman
Affiliation:
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
C D W Wilkinson
Affiliation:
Department of Electronic Engineering, University of Glasgow, Glasgow, UK
A S G Curtis
Affiliation:
Centre for Cell Engineering, IBLS, University of Glasgow, Glasgow, UK
*
*Author for correspondence
Get access

Abstract

Three fundamentally different methods were used to fabricate nanometric surface features on polymers or fused silica. Phase separation of binary polymer mixes resulted in randomly distributed features whose depth and shape could be tightly controlled over large areas. Colloidal resist patterned large areas randomly and uniformly with very fine spikes. In contrast e-beam and reactive ion etching were used to create a set of regular spaced pillars on an orthogonal pattern. Some of the surfaces were replicated by in situ polymerization, solvent casting, embossing or melt molding onto polystyrene (PS) or ε–poly caprolactone (ε–PCL). Nanometric features down to 60nm were imprinted onto the polymers with high fidelity. Cells were seeded onto the nanometric surfaces and adhesion, morphology and cytoskeleton investigated. Cells respond to regular features of 170/80nm (width/depth) with reduced adhesion and changes in overall morphology and cytoskeleton. Small nanofeatures (13nm, 35nm depth) made by phase separation on the other hand increased adhesion and promoted cytoskeletal differentiation. The responses of the cells are indicative that nanometric surface features are useful modifications on scaffolds for tissue engineering or on medical implants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brunette, D. M. & Chehroudi, B., J Biomech Eng, 121, 4957 (1999).Google Scholar
2. Britland, S., Morgan, H., Wojciak-Stothard, B., Riehle, M., Curtis, A. & Wilkinson, C., Exp. Cell Res., 228, 313325 (1996).Google Scholar
3. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E., Science, 276, 14251428 (1997).Google Scholar
4. Curtis, A. & Wilkinson, C., Biochem Soc Symp, 65, 1526 (1999).Google Scholar
5. Clark, P., Connolly, P., Curtis, A. S., Dow, J. A. & Wilkinson, C. D., J. Cell Sci., 99 (Pt 1), 7377 (1991).Google Scholar
6. Wojciak-Stothard, B., Curtis, A., Monaghan, W., Macdonald, K. & Wilkinson, C., Exp. Cell Res., 223, 426435 (1996).Google Scholar
7. Turner, S., Kam, L., Isaacson, M., Craighead, H. G., Shain, W. & Turner, J., J Vac Sci & Tech B, 15, 28482854 (1997).Google Scholar
8. Goodman, S. L., Sims, P. A. & Albrecht, R. M., Biomaterials, 17, 20872095 (1996).Google Scholar
9. Cima, L. G., Vacanti, J. P., Vacanti, C., Ingber, D., Mooney, D. & Langer, R., J Biomech Eng, 113, 143151 (1991).Google Scholar
10. Weiss, L. (ed.) Cell and tissue biology (Urban & Schwarzenberger Inc, Baltimore MD, 1983).Google Scholar
11. Clark, P., Connolly, P., Curtis, A. S., Dow, J. A. & Wilkinson, C. D., Development, 99, 439448 (1987).Google Scholar
12. Zamir, E. & Geiger, B., J Cell Sci, 114, 35833590 (2001).Google Scholar
13. Vieu, C., Carcenac, F., Pepin, A., Chen, Y., Mejias, M., Lebib, A., L. Manin-Ferlazzo, Couraud, L. & H. Launois, Appl Surf Sci, 164, 111117 (2000).Google Scholar
14. Rogers, J. A., Paul, K. E., Jackman, R. J. & Whitesides, G. M., Appl Phys Lett, 70, 26582660 (1997).Google Scholar
15. Casey, B. G., Monaghan, W. & Wilkinson, C. D. W., Microelectronic Eng, 35, 393396 (1997).Google Scholar
16. Chou, S. Y., Krauss, P. R. & Renstrom, P. J., J. Vac. Sci. Technol. B, 14, 41294133 (1996).Google Scholar
17. Hanarp, P., Sutherland, D., Gold, J. & Kasemo, B., Nanostructured Mat, 12, 429432 (1999).Google Scholar
18. Affrossman, S., Henn, G., Oneill, S. A., Pethrick, R. A. & Stamm, M., Macromolecules, 29, 50105016 (1996).Google Scholar
19. Webster, T. J., Schadler, L. S., Siegel, R. W. & Bizios, R., Tissue Eng, 7, 291301 (2001).Google Scholar
20. Midha, A., Murad, S. K. & Weaver, J. M. R., Microelectronic Eng, 35, 99102 (1997).Google Scholar
21. MacIntyre, D. & Thoms, S., Microelectron. Eng., 35, 213216 (1997).Google Scholar
22. Wojciak, B., Crossan, J., Curtis, A. & Wilkinson, C., J Mat Sci Mat In Med, 6, 266271 (1995).Google Scholar
23. Dalby, M., Riehle, M. O., Johnstone, H., Curtis, A. S. G. & Affrossman, S., Biomaterials, (Accepted 11.2001) (2002).Google Scholar
24. Curtis, A. & Wilkinson, C., Trends in Biotechnology, 19, 97101 (2001). Y5.1.10Google Scholar
25. Dalby, M., Yarwood, S., Johnstone, H., Riehle, M., Affrossman, S. & Curtis, A., Exp. Cell Res., (Accepted Jan 2002) (2002).Google Scholar
26. Parry, A. O., Macdonald, E. D. & Rascon, C., J. Phys.-Condes. Matter, 13, 383402 (2001).Google Scholar
27. Gleiche, M., Chi, L. F. & Fuchs, H., Nature, 403, 173175 (2000).Google Scholar