Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:33:37.705Z Has data issue: false hasContentIssue false

Nanoindentation of silicon: hardness and semiconductor-metal phase transition

Published online by Cambridge University Press:  01 February 2011

M. Hebbache*
Affiliation:
Laboratoire de Physique Théorique de la Matière Condensée, Université Paris 7, 2 place Jussieu, F-75251 Paris Cedex 05, France.
Get access

Abstract

The hardness of a thin film of silicon is studied in the framework of the 3D Hertzian contact theory. The anisotropy and the anharmonicity of silicon are taken into account for the first time. It is shown that the contribution of plasticity to the hardness of silicon is significant while we know that it possesses strong covalent bonds and dislocations must be thermally activated in this material. The semiconductor-metal phase transition, driven by the tetragonal shear strain superimposed on the non-hydrostatic pressure generated by a diamond indenter, is also studied. For this aim, the Landau theory of phase transitions and the contact theory are combined. The comparison with available nanoindentation experiments is made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pethica, J. N., Hutchings, R. and Olivier, W. C., Phil. Mag. A 48, 598 (1983).Google Scholar
2. Olivier, W. C. and Pharr, G. M., J. Mater. Res. 7, 1594 (1992).Google Scholar
3. Woirgard, J., Thomas, C., Girard, J. C. and Audurier, V., J. Eur. Ceram. Soc., 18, 2297 (1998).Google Scholar
4. Richter, A., Ries, R., Smith, R., Henkel, M. and Wolf, B., Diamond and related Materials 9, 170 (2000).Google Scholar
5. Castaing, J., Veyssiere, P., Kubin, L. P. and Rabier, J., Phil. Mag. A 44, 1407 (1981).Google Scholar
6. Willis, J. R., J. Mech. Phys. Solids 14, 163 (1966).Google Scholar
7. Barnett, D. M. and Lothe, J., Phys. Norv. 8, 13 (1975).Google Scholar
8. Stroh, A. N., Phil. Mag. 3, 625 (1958); J. Math. Phys. 41, 77 (1962).Google Scholar
9. Farnell, G. W., in Physical Acoustics 6, 109 (Academic Press, N.Y, 1970).Google Scholar
10. Landau, L. and Lifchitz, E., Theory of Elasticity, (Pergamon Press, England, 1970).Google Scholar
11. Williams, J. S., Chen, Y., Wong-Leung, J., Kerr, A. and Swain, M. V., J. Mater. Res., 14, 2338 (1999).Google Scholar
12. McSkimin, H. J. and Andreatch, P. Jr, J. Appl. Phys. 35, 3312 (1964);Google Scholar
McSkimin, H. J. and Andreatch, P. Jr, J. Appl. Phys. 43, 2944 (1972).Google Scholar
13. Hall, J. J., Phys. Rev. 161, 756 (1967).Google Scholar
14. Grimsditch, M. H., Anastassakis, E. and Cardona, M., Phys. Rev. B 18, 901 (1978);Google Scholar
Grimsditch, M. H. and Ramdas, A. K., Phys. Rev. B 11, 3139 (1975).Google Scholar
15. Wolfram, S., mathematica: a system for doing mathematics by computer (Addison-Wesley, California, 1991).Google Scholar
16. Hebbache, M., Phys. Rev. B 68, 125310 (2003).Google Scholar
17. Thurston, R. N. and Brugger, K., Phys. Rev. 133, A1604 (1964).Google Scholar
18. Wallace, D. C., in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic, New York, 1970), Vol. 25, p. 301.Google Scholar
19. Rek, Z., Acta Phys. Pol. A 41, 635 (1972).Google Scholar
20. Alexander, H., in Dislocations in Solids, Ed., Nabarro, F. R. N. (Elsevier, 1986), Chap. 35, p. 115.Google Scholar
21. Hebbache, M. and Zemzemi, M., Phys. Rev. B 67, 233302 (2003).Google Scholar
22. Musgrave, M. J. P. and Pople, J. A., J. Phys. Chem. Solids, 23, 321 (1962).Google Scholar
23. Vanderbilt, D., Taole, S. H. and Narasimhan, S., Phys. Rev B 40, 5657 (1989).Google Scholar
24. Gerlich, D., J. Appl. Phys. 77, 4373 (1995).Google Scholar
25. Cousins, C. S. G., Gerward, L., Staun Olsen, J., Selsmark, B. and Sheldon, B. J., J. Phys. C 20, 29 (1987).Google Scholar
26. Nielsen, O. H. and Martin, R. M., Phys. Rev. B 32, 3792 (1985).Google Scholar
27. Prasad, O. H. and Suryanarayana, M., Phys. Stat. Sol.(b) 112, 627 (1982).Google Scholar
28. McMahon, M. I. and Nelmes, R. J., Phys. Rev. B 47, 8337 (1993);Google Scholar
McMahon, M. I., Nelmes, R. J., Wright, N. G. and Allan, D. R., Phys. Rev. B 50, 739 (1994).Google Scholar
29. Singh, A. K. and Kennedy, G. C., J. Appl. Phys. 45, 4686 (1974);Google Scholar
Singh, A. K. and Balasingh, C., J. Appl. Phys. 48, 5338 (1977).Google Scholar
30. Hebbache, M., Mattesini, M. and Szeftel, J., Phys. Rev. B 63, 205201 (2001).Google Scholar