Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:08:38.474Z Has data issue: false hasContentIssue false

Nanogravimetric Evaluation of Hydrogen Uptake in Thin Film Materials by A Quartz Crystal Microbalance

Published online by Cambridge University Press:  01 February 2011

Tao Xu*
Affiliation:
[email protected], Northern Illinois University, Department of Chemistry and Biochemistry, Normal Road, DeKalb, IL, 60115, United States, 815-753-6357
Get access

Abstract

To study the hydrogen storage materials in their thin film format provides a unique approach to investigate many interfacial phenomena associated with current research on hydrogen storage materials. However, the challenge is to establish a reliable method to measure weight change of at least a few tens of nanograms in pressurized hydrogen gas. We demonstrate the application of a quartz crystal microbalance for direct mass-metric evaluation of hydrogen storage materials in the pressure range of 0˜40 bars. The frequency shift of a quartz crystal coated with hydrogen absorbing materials is affected by the hydrogen mass uptake on the crystal, the pressure and the viscosity of the gases, and the crystal surface roughness, of which the roughness contribution has no direct analytical expression. Through a control experiment on the same crystal in helium, the roughness contribution in hydrogen can be derived and the frequency shift due to the hydrogen mass uptake is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Crabtree, G.W., Dresselhaus, M. S., and Buchanan, M.V., Phys. Today 57, No. 12, 39 (2004).Google Scholar
2 Bogdanovi, B., Schwickardi, M. J. Alloys Compd. 253, 1 (1997)Google Scholar
3 Li, Y., Yang, R. T., J. Am. Chem. Soc., 128, 8136 (2006)Google Scholar
4 Kajiura, H., Tsutsui, S., Kadono, K., Kakuta, M., Ata, M., Murakami, Y. Appl. Phys. Lett. 82, 1105 (2003)Google Scholar
5 Scanlon, L. G., Balbuena, P. B., Zhang, Y., Sandi, G., Back, C. K., Feld, W. A., Mack, J., Rottmayer, M. A., Riepenhoff, J. L. J. Phys. Chem. B 110, 7688 (2006).Google Scholar
6 Li, X.S., Xu, H. W., Xu, C. L., Mao, Z. Q., Wu, D. H., Int. J. Hydrogen Energy, 28, 1251 (2003)Google Scholar
7 Buttry, D. A., Ward, M. D., Chem. Rev. 92, 1355 (1992)Google Scholar
8 Kulchytskyy, I., Kocanda, M. G. Xu, T. Appl. Phys. Lett., 91, 113507 (2007)Google Scholar
9 Wu, Y. T., Akoto-Ampaw, P. J., Elbaccouch, M., Hurrey, M. L., Wallen, S. L., Grant, C. S., Langmuir 20, 3665 (2004).Google Scholar
10 Tsionsky, V., Daikhin, L., Urbakh, M., Gileadi, E. Langmuir 11, 674 (1995)Google Scholar
11.Sauerbery, G. Phys., 155, 206 (1959).Google Scholar
12.Stockbridge, C. D. In Vacuum Microbalance Techniques Behrndt, K. H. Ed.; Plenum Press: New York 5, 147 (1966)Google Scholar
13http://webbook.nist.gov/chemistry/fluid/ (Accessed on June 10th, 2007)Google Scholar
14 Urbakh, M., Daikhin, L., Phys. Rev. B 49, 4866 (1994)Google Scholar
15.Hieda, M., Garcia, R., Dixon, M., Daniel, T., Allara, D., Chana, M. H. W. Appl. Phys. Lett. 84, 628 (2003)Google Scholar
16.Sakamoto, Y., Takai, K., Takashima, I., Imada, M., J. Phys.: Cond. Matt. 8, 3399 (1996)Google Scholar