Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T08:46:06.506Z Has data issue: false hasContentIssue false

Nanocrystalline Ni-Mo Alloys Prepared by Mechanical Alloying for Applications in Catalysis

Published online by Cambridge University Press:  25 February 2011

R. Schulz
Affiliation:
Hydro-Québec, Technologie des Matériaux, Varennes, PQ Canada, J3X 1S1 J. Shinze, A. Lamarre, A. Van Neste and E. GhaliUniversité Laval, Département de Métallurgie, Ste Foy, PQ Canada, GIK 7P4
L Dignard-Bailey
Affiliation:
Energy Diversification Research Lab, Canmet, Varennes, P.QCanada
M.L Trudeau
Affiliation:
Hydro-Québec, Technologie des Matériaux, Varennes, PQ Canada, J3X 1S1 J. Shinze, A. Lamarre, A. Van Neste and E. GhaliUniversité Laval, Département de Métallurgie, Ste Foy, PQ Canada, GIK 7P4
J.Y. Huot
Affiliation:
Centre de Technologie Noranda, Pointe Claire, P.Q, Canada H9R IG5
Z.H. Yan
Affiliation:
Hydro-Québec, Technologie des Matériaux, Varennes, PQ Canada, J3X 1S1 J. Shinze, A. Lamarre, A. Van Neste and E. GhaliUniversité Laval, Département de Métallurgie, Ste Foy, PQ Canada, GIK 7P4
Get access

Abstract

Amorphous and nanocrystalline Nil-xMox alloys have been prepared by mechanical alloying of pure Ni and Mo elemental powders in an atmosphere containing various amounts of oxygen. Metastable fcc solid solutions are formed when the Mo content is less than 30 at.%. The amorphization of the supersaturated solid solution occurs when the Mo concentration exceeds 30 at.%. The electrocatalytic properties of the nanocrystalline alloys for the hydrogen evolution reaction in alkaline solutions have been investigated. High electrocatalytic activity is found when the average crystal size is below 10 nm and when the supersaturated solid solution contains some oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Brown, D.E, Mahmood, M.N., Turner, A.K., Hall, S.M. and Fogarty, P.O., Int. J. Hydrogen Energy, 7, 405 (1982)Google Scholar
2 Brown, D.E, Hall, S.M., Mahmood, M.N., Man, M.C.M., Turner, A.K., Wood, D. and Anderson, S., Proc. Symp. Electrocatalysis (Edited by O'Grady, W.E., Ross, P.N. Jr. and Will, F.G.) Vol.82–2, p.145, Electrochemical Soc., New York (1982)Google Scholar
3 Uenishi, K., Kobayashi, K.F., Ishihara, K.N., and Shingu, P.H., Materials Science and Engineering, A134, 1342 (1991)Google Scholar
4 Koch, C.C., Cavin, O.B., McKamey, C.G., and Scarbrough, J.O., Appl. Phys. Lett., 43, 1017 (1983)Google Scholar
5 Hellstern, E., Fecht, H.J., Fu, Z., and Johnson, W.L., J. Appl. Phys., 65, 305 (1989)Google Scholar
6 Huot, J.Y., Trudeau, M.L, Brossard, L and Schulz, R., Int. J. Hydrogen Energy, 14, 319 (1989)Google Scholar
7 Huot, J.Y., Trudeau, M.L, Brossard, L and Schulz, R., J. Electrochem.Soc., 136, 2224(1989)Google Scholar
8 Huot, J.Y., Trudeau, M.L, Neste, A. van and Schulz, R., Materials Research Soc. Symp. Proc., Fall meeting, Boston (1990)Google Scholar
9 Trudeau, M.L, Huot, J.Y. and Schulz, R., Appl. Phys. Lett., 58, 2764 (1991)Google Scholar
10 Trudeau, M.L, Huot, J.Y., Schulz, R., Dussault, D., Neste, A. Van and L'Esperance, G., Phys. Rev. B, 45, 4626 (1992)Google Scholar
11 Schulz, R., Trudeau, M.L, Huot, J.Y., Bailey, L, Yan, Z.H., Lamarre, A., Jin, S., Neste, A. Van and Ghali, E. (submitted to Phys. Rev. B)Google Scholar
12 Trudeau, M.L and Schulz, R., Mater. Sci. and Eng. A134, 1361 (1991)Google Scholar
13 Kayser, G.F., J. Mater. Sci., 24, 2677 (1989)Google Scholar
14 Bormann, R., Gartner, F. and Zoltzer, K., J. of Less-Common Metals, 154, 77 (1989)Google Scholar