Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:43:52.259Z Has data issue: false hasContentIssue false

Nanocrystalline Binary, Ternary and Dilute Magnetic Semiconductors from Polychalcogenide Complexes

Published online by Cambridge University Press:  15 February 2011

Kang-Woo Kim
Affiliation:
Center for Fundamental Materials Research, Department of Physics, Michigan State University, East Lansing, MI 48824
J. A. Cowen
Affiliation:
Department of Chemistry, Department of Physics, Michigan State University, East Lansing, MI 48824
Sandeep Dhingra
Affiliation:
Center for Fundamental Materials Research, Department of Physics, Michigan State University, East Lansing, MI 48824
Mercouri G. Kanatzidis
Affiliation:
Center for Fundamental Materials Research, Department of Physics, Michigan State University, East Lansing, MI 48824
Get access

Abstract

The molecular polychalcogenide complexes [M(Se4)2]2−, (M=Mn, Zn, Cd, Hg), [Sn(Se4)3]2−, and [Cu4Se12]2− can be converted to the corresponding binary semiconducting solids. DMF and DMSO solutions of these complexes react with Se-abstracting reagents such as CN and (n-Bu)3P to yield the corresponding binary solids at 155 °C or less. Appropriate stoichiometric mixtures of [Cu4Se12]2− and [In3Se15]3− react to give CulnSe2. Appropriate stoichiometric mixtures of [Cd(Se4)2]2− and [Mn(Se4)2]2− give solid solutions Cd1−xMnxSe where O<x<l. The Cd1−xMnxSe solid solutions were characterized by variable temperature magnetic measurements. Depending on the reaction conditions, metal precursor complex and Se-abstracting reagent used, the semiconductor particle size ranges from the quantum-size to the bulk regime. This method of synthesis produces the little known γ-MnSe in pure form.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 ) (a) Chemical Perspectives in Microelectronic Materials references therein., Gross, M. E.; Jasinski, J. M.; Yates, J. T. (Eds) Materials Research Society Symposia Proceedings, Vol.131, 1989. (b) Better Ceramics Through Chemistry lll, and references therein. Brinker, C.J.; Clark, D.W.; and Ulrich, D.R. (Eds) Materials Research Society Symposia Proceedings, Vol 121, 1988Google Scholar
2) (a) Smith, R.A. in “Semiconductors” pp. 438, Cambridge University Press, 1978. (b) Bartlett, B.E. et al. Infrared Phys. 1969, 9, 35.Google Scholar
3) Kun, Z. K. Solid State Technology 1988, 31, 7779.Google Scholar
4) Ballman, A.A.; Byer, R.L.; Eimerl, D.; Feigelson, R.S.; Feldman, B.J.; Goldberg, L.S.; Menyuk, N.; Tang, C.L. Applied Optics 1987, 26, 224227.Google Scholar
5) (a) Tuttle, J. R.; Albin, D. S.; Noufi, R. Solar Cells 1989, 27, 231236(b) Zeibel, K. 'The potential of CulnSe2 and CdTe for Space photovoltaic Applications. 23rd Intersociety Energy Conversion Engineering Conference” Vol.3, Goswami, D. Y. ed, ASME, 1988, pp 97–102Google Scholar
6) (a) Whittingham, M.S. Science 1976, 192, 1125. (b) Whittingham, M.S. J. Solid State Chem. 1979, 29, 303–310.Google Scholar
7) (a) Kanatzidis, M. G. Comments on Inorg. Chem. 1990,10, 161195 (b) Ansari, M. A.; Ibers, J. A. Coord. Chem. Rev. 1990, 100, 223–266 (c) Kolis, J. W. Coord. Chem. Rev. 1990, 105, 195–219.CrossRefGoogle Scholar
8) “Semiconductors and Semimetals” Vol 25, Dilute Magnetic semiconductors, edited by Furdyna, J. K. and Kossut, J. (Academic Press, Boston) (1988). References therein.Google Scholar
9) Dhingra, S.; Kim, K.-W.; Kanatzidis, M. G.in ”Chemical Perspectives in Microelectronic Materials” Mat. Res. Soc. Symp. Proc. 1991,204, 163168 Google Scholar
10) Full details will be reported laterGoogle Scholar
11) (a) Baroni, A. Z. Krist. 1938, A99, 336339 (b) MacLaren Murray, R.; Forbes, B. C.; Heyding, R. D. Can. J. Chem. 1972, 50, 4059–406Google Scholar