Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T11:49:12.893Z Has data issue: false hasContentIssue false

NANOCOMPOSITES TO ENHANCE ZT IN THERMOELECTRICS

Published online by Cambridge University Press:  01 February 2011

Mildred Dresselhaus
Affiliation:
[email protected], MIT, Physics and Electrical engineering, 77 Massachusetts avenue room 13-3005, Cambridge, MA, 02139, United States
Gang Chen
Affiliation:
[email protected], Massachusetts Institute of Technology, Mechanical Engineering, Cambridge, MA, 02139, United States
Zhifeng Ren
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, MA, 02467, United States
Jean-Pierre Fleurial
Affiliation:
[email protected], Jet Propulsion Laboratory, Pasadena, CA, 91109, United States
Pawan Gogna
Affiliation:
[email protected], Jet Propulsion Laboratory, Pasadena, CA, 91109, United States
Ming Y Tang
Affiliation:
[email protected], Massachusetts Institute of Technology, Electrical Engineering and Computer Science, Cambridge, MA, 02139, United States
Daryoosh Vashaee
Affiliation:
[email protected], Massachusetts Institute of Technology, Mechanical Engineering, Cambridge, MA, 02139, United States
Hohyun Lee
Affiliation:
[email protected], Massachusetts Institute of Technology, Mechanical Engineering, Cambridge, MA, 02139, United States
Xiaowei Wang
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, MA, 02467, United States
Giri Joshi
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, MA, 02467, United States
Gaohua Zhu
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, MA, 02467, United States
Dezhi Wang
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, MA, 02467, United States
Richard Blair
Affiliation:
[email protected], University of Central Florida, Chemistry, Orlando, FL, 32816, United States
Sabah Bux
Affiliation:
[email protected], University of California, Los Angeles, Chemistry & Biochemistry, Los Angeles, CA, 90095, United States
Richard Kaner
Affiliation:
[email protected], University of California, Los Angeles, Chemistry & Biochemistry, Los Angeles, CA, 90095, United States

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The concept of using “self-assembled” and “force-engineered” nanostructures to enhance the thermoelectric figure of merit relative to bulk homogeneous and composite materials is presented in general terms. Specific application is made to the Si-Ge system for use in power generation at high temperature. The scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity are emphasized along with the practical advantages of having bulk samples for property measurements and a straightforward path to scale-up materials synthesis and integration of nanostructured materials into thermoelectric cooling and power generation devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

References

[1] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 1272712731 (1993).Google Scholar
[2] Hicks, L. D., Harman, T. C., and Dresselhaus, M. S., Appl. Phys. Lett. 63, 3230 (1993).Google Scholar
[3] Lon Bell report at the Industrial Physics Forum, of the American Vacuum Society and the American Institute of Physics, Seattle, WA, Oct 2007.Google Scholar
[4] Moyzhes, B.Y. and Nemchinsky, V., Appl. Phys. Lett., 73, 18951897 (1998).Google Scholar
[5] Koga, T., Sun, X., Cronin, S. B., and Dresselhaus, M. S., Appl. Phys. Lett. 73, 29502952 (1998).Google Scholar
[6] Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., Science 297, 22292232 (2002).Google Scholar
[7] Venkatasubramanian, Rama, Siivola, E., Colpitts, Thomas, and O'Quinn, Brooks, Nature (London) 413, 597602 (2001).Google Scholar
[8] Hsu, Kuei Fang, Loo, Sim, Guo, Fu, Chen, Wei, Dyck, Jeffrey S., Uher, Ctirad, Hogan, Tim, Polychroniadis, E. K., and Kanatzidis, Mercouri G., Science 303, 818821 (2004).Google Scholar
[9] Androulakis, J., Hsu, K. F., Pcionek, R., Kong, H., Uher, C., D'Angelo, J. J., Downey, A., Hogan, T., and Kanatzidis, M. G., Advanced Materials 18, 11701173 (2006).Google Scholar
[10] Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P., Advanced Materials 19, 10431053 (2007).Google Scholar
[11] Li, Deyu, Wu, Yiying, Kim, Philip, Shi, Li, Yang, Peidong, and Majumdar, Arun, Appl. Phys. Lett. 83, 29342936 (2003).Google Scholar
[12] Li, Deyu, Wu, Yiying, Fan, Rong, Yang, Peidong, and Majumdar, Arun, Appl. Phys. Lett. 83, 31863188 (2003).Google Scholar
[13] Dames, C. and Chen, G., J. Appl. Phys. 95, 682693 (2004).Google Scholar
[14] Dames, C. and Chen, G., “Thermal Conductivity of Nanostructured Thermoelectric Materials”, CRC Handbook, edited by Rowe, M., pp.42–1 to 42-16, (2006), Taylor and Francis, Boca Raton.Google Scholar
[15] Jeng, Ming-Shan, Yang, Ronggui, Song, David, and Chen, Gang. In Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, pages HT200572780, American Society of Mechanical Engineers, New York, 2005.Google Scholar
[16] Yang, Ronggui, Chen, Gang, and Dresselhaus, M. S., Phys. Rev. B 72, 125418 (2005).Google Scholar
[17] Yang, Ronggui. Nanoscale Heat Conduction with Applications in Thermoelectrics and Nanoelectronics. PhD thesis, Massachusetts Institute of Technology, December 2005. Department of Mechancial Engineering.Google Scholar
[18] Slack, G. A., in Solid State Physics, page 1, edited by Turnbull, D. and Ehrenreich, H. (Academic, New York, 1979), Vol. 34.Google Scholar
[19] Henry, A. and Chen, G., Spectral Phonon Properties of Silicon Based Molecular Dynamics and Lattice Dynamics Simulations, Journal of Computational and Theoretical Nanosciences, accepted.Google Scholar
[20] Vining, C.B. and Fleurial, J.P., “Silicon-Germanium: an Overview of Recent Developments”, A Critical Review of Space Nuclear Power and Propulsion 1984-1993, American Institute of Physics, ed. El-Genk, M., New-York, 87120 (1994).Google Scholar
[21] Harman, T. C., Spears, D. L., and Manfra, M. J., J. Electron. Mater. 25, 1121 (1996).Google Scholar
[22] Harman, T. C., Spears, D. L., Calawa, D. R., Groves, S. H., and Walsh, M. P.. In Sixteenth International Conference on Thermoelectrics: Proceedings, ICT'97; Dresden, Germany, edited by Heinrich, Armin and Schumann, Joachim, page 416, Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ 09955-1331, 1997.Google Scholar
[23] Hicks, L. D., Harman, T. C., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 53, 1049310496 (1996).Google Scholar
[24] Mahan, G.D. and Sofo, J.O., Proc. Natl. Acad. Sci. USA 93, 7426 (1996).Google Scholar
[25] Hoang, K., Mahanti, S. D., and Jena, P., Phys. Rev. B 76, 115432 (2007).Google Scholar
[26] Geballe, T. and Hall, R. N., Phys. Rev. 98, 940 (1955).Google Scholar
[27] Hall, R. N., Solid-State Electronics 2, 115 (1958).Google Scholar
[28] Dismukes, J. P., Ekstrom, L., Steigmeier, E. F., Kudman, I., and Beers, D. S., J. Appl. Phys. 35, 28992907 (1964).Google Scholar
[29] Rosi, F.D., Dismukes, J.P., and Hockings, E.F., Electrical Engineering 79(6), 450459 (1960).Google Scholar