Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T04:13:24.255Z Has data issue: false hasContentIssue false

Nanocoating on Carbon Nanofibers by Plasma Polymerization of Ethylene Gas

Published online by Cambridge University Press:  31 January 2011

Ernesto Hernández-Hernández
Affiliation:
[email protected]@hotmail.com, Centro de Investigación en Química Aplicada, Coahuila, Mexico
María Guadalupe Neira-Velázquez
Affiliation:
[email protected], Centro de Investigación en Química Aplicada, Coahuila, Saltilo, Mexico
Luis Francisco Ramos-de Valle
Affiliation:
[email protected], Centro de Investigación en Química Aplicada, Coahuila, Saltilo, Mexico
Arturo Ponce
Affiliation:
[email protected], Centro de Investigación en Química Aplicada, Coahuila, Saltilo, Mexico
María Guadalupe Sánchez-Anguiano
Affiliation:
[email protected], Universidad Autónoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
Get access

Abstract

Ethylene gas was used to modify the surface of carbon nanofibers (CNFs) by plasma polymerization. The modified CNFs were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, dispersion test in chloroform and high resolution transmission electron microscopy (HRTEM).

The results of dispersion test in chloroform showed that the plasma treatment promoted a stable dispersion of the treated nanofibers in the solvent. The FTIR results indicated that an organic polymer was deposited on the surface of the CNFs, and the Raman spectra showed evidence of the chemical interaction between the nanofibers and the polyethylene (PE) deposited by plasma. The presence of the thin polymer coating on the surface of CNFs was confirmed by HRTEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shi, D. and Hee, P., Rev. Adv. Mater. Sci. 7, 97 (2004).Google Scholar
2. Valle, L. F. Ramos-de, Neira-Velázquez, M.G. and Hernández-Hernández, E., J. Appl. Polym. Sci. 107, 1893 (2008).Google Scholar
3. Ávila-Orta, C. A., Cruz-Delgado, V. J., Neira-Velázquez, M. G., Hernández-Hernández, E., Méndez-Padilla, M. G. and Medellín-Rodríguez, F. J., Carbon 47, 1916 (2009.)Google Scholar
4. Dresselhaus, M. S., Dresselhaus, G., Saito, R. and Jorio, A., Phys. Rep. 409, 47 (2005).Google Scholar
5. Rao, A. M., Eklund, P.C., Bandow, S., Thess, A. and Smalley, R. E., Nature 1997. 388, 257 (1997).Google Scholar
6. Ma, H., Zeng, J., Realff, M. L., Kumar, S. and Schiraldi, D. A., Compos Sci and Technol. 63, 1617 (2003).Google Scholar
7. Graupner, R., J. Raman Spectrosc. 38, 673 (2007).Google Scholar
8. Strano, M. S., Dike, C. A., Usrey, M. L., Barone, P. W., Allen, M. J., Shan, H., Kittrell, C., Hauge, R. H., Tour, J. M. and Smalley, R. E., Science 301, 1519 (2003).10.1126/science.1087691Google Scholar
9. Zhang, X., Sreekumar, T. V., Liu, T. and Kumar, S., J. Phys. Chem. B 108, 16435 (2004).Google Scholar
10. Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodríguez-Macías, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. t., Lee, R. S., Fischer, J. E., Rao, A. M., Eklund, P. C. and Smalley, R. E., Appl. Phys. A 67, 29 (1998).Google Scholar
11. Lafi, L., Cossement, D. and Chahine, R., Carbon 43, 1347 (2005).Google Scholar
12. Simmons, J. M., Nichols, B. M., Baker, S. E., Marcus, M. S., Castellini, O. M., Lee, C. S., Hamers, R. J. and Eriksson, M. A., J. Phys. Chem. B 110, 7113 (2006).Google Scholar
13. Lian, Y. F., Maeda, Y., Wakahara, T., Nakahodo, T., Akasaka, T., Kazaoui, S., Minami, N., Shimizu, T. and Tokumoto, H., Carbon 43, 2750 (2005).10.1016/j.carbon.2005.05.037Google Scholar
14. Corio, P., Santos, A. P., PS, P. S. Santos, Temperini, M. L. A., Brar, V. W., Pimenta, M. A. and Dresselhaus, M. S., Chem. Phys. Lett. 383, 475 (2004).Google Scholar
15. Utegulov, Z. N., Mast, D. B., He, P., Shi, D. and Gilland, R. F., J. Appl. Phys. 97, 104324 (2005).Google Scholar
16. Dresselhaus, M. S. and Dresselhaus, G., Light scattering in graphite intercalation compounds. In Light Scattering in Solids III, Topics in Applied Physics, 3 ed. edited by Cardona, M. and Untherodt, G, (Springer Verlag,Vol. 51, 1982).Google Scholar
17. Christian, R., Solvents and Solvent Effects in Organic Chemistry. 3rd ed. (Wiley-VCH Publishers, 2003).Google Scholar
18. Shaffer, M. S. P., Fan, X. and Windle, A. H., Carbon 36, 1603 (1998).Google Scholar
19. Ros, T. G., Dillen, A. J. van, Geus, J. W. and Koningsberger, D. C., Chem. Eur. J. 8, 1151 (2002).Google Scholar
20. Silverstein, R. M., Bassler, G. C. and Morril, T. C., Identificación espectrometrica de compuestos orgánicos.(Ed Diana, 1980) p. 98.Google Scholar
21. Chen, J., Hamon, M. A., Hu, H., Chen, Y., Rao, A. M., Eklund, P. C. and Haddon, R. C., Science 282, 95 (1998).Google Scholar
22. Brandrup, J., Immnergut, E. H. and Grulke, E.A.. Polymer Handbook. Fourth ed. Vol. 2. (Wiley-interscience, 1999). pp. VII (675714).Google Scholar
23. Khare, B., Wilhite, P., Tran, B., Teixeira, E., Fresquez, K., Mvondo, D. N., Bauschlicher, C. and Meyyappan, M.. J. Phys. Chem. B 109, 23466 (2005).Google Scholar
24. Khare, B. N., Wilhite, P., Quinn, R. C., Chen, B., Schingler, R. H., Tran, B., Imanaka, H., So, C. R., Bauschlicher, C. W. and Meyyappan, M., J. Phys. Chem. B 108, 8166 (2004).Google Scholar