Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T15:52:29.948Z Has data issue: false hasContentIssue false

Nanoalloyed Bi2Te3, Sb2Te3 and Bi2Te3/Sb2Te3 Multilayers

Published online by Cambridge University Press:  11 August 2011

M. Winkler
Affiliation:
Fraunhofer-Institute for Physical Measurement Techniques IPM, Thermoelectric Systems, Heidenhofstraße 8, 79110 Freiburg, Germany
Jan D. Koenig
Affiliation:
Fraunhofer-Institute for Physical Measurement Techniques IPM, Thermoelectric Systems, Heidenhofstraße 8, 79110 Freiburg, Germany
S. Buller
Affiliation:
Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
U. Schuermann
Affiliation:
Synthesis and Real Structure, Institute for Materials Science, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
L. Kienle
Affiliation:
Synthesis and Real Structure, Institute for Materials Science, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
W. Bensch
Affiliation:
Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
H. Boettner
Affiliation:
Fraunhofer-Institute for Physical Measurement Techniques IPM, Thermoelectric Systems, Heidenhofstraße 8, 79110 Freiburg, Germany
Get access

Abstract

In this work, thin films of Bi2Te3 and Sb2Te3 were synthesized by the nanoalloying approach: Nanoscale layers of the elements Element nanoscale layers of Bi, Sb and Te are stoichiometrically deposited on a cold substrate using a MBE setup and subjected to an annealing process in which a solid state reaction yielding Bi2Te3 and Sb2Te3 takes place. Besides the two binary compounds, nanoscale multilayer (ML) stacks of 9 nm Bi2Te3/9 nm Sb2Te3 were created. The electrical transport properties of the binary compounds were determined in dependence of composition. Compound formation was directly observed in temperature-dependent in-situ XRD scans and was found to start at ∼100 °C. The stability of the Bi2Te3/Sb2Te3 ML nanostructure against temperature-driven interdiffusion during annealing was examined by SIMS and TEM for an annealing temperature of 150 and 250 °C, respectively. A comparative TEM study of the as grown and annealed state is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.-P., and Gogna, P., Adv. Mater. 19, 1043 (2007)Google Scholar
[2] Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B.., Nature 413, 597 (2001)Google Scholar
[3] König, J.D., Böttner, H., Tomforde, J. et al. , Proceedings of 26th international Conference on Thermoelectrics, Korea, 395 (2007)Google Scholar
[4] Johnson, D.C., Current Opinion in Solid State & Materials Science 3, 159 (1996)Google Scholar
[5] Harris, F.R., Standridge, S., Feik, C., and Johnson, D.C.. , Angew. Chem. Int. Engl 42, 5295 (2003)Google Scholar
[6] König, J.D., Winkler, M., Buller, S., Bensch, W., Schuermann, U., Kienle, L., Böttner, H., to be published in Journal of Electronic Materials, Special Issue: International Conference on Thermoelectrics 2010, (2011)Google Scholar
[7] Böttner, H., Schubert, A., Kölbel, H., Gavrikov, A., Mahlke, A., Nurnus, J., Proceedings of the 23rd International Conference on Thermoelectrics (ICT) 2004, Adelaide, Australia, 114 (2004)Google Scholar
[8] Venkatasubramanian, R., Colpitts, T., Watko, E., Lamvik, M., El-Masry, N., Journal of Crystal Growth 170, 817 (1997)Google Scholar
[9] Winkler, M., König, Jan D., Buller, S., Schürmann, U., Kienle, L., Bensch, W., Böttner, H., Proceedings of 8th European Conference on Thermoelectrics, Como, Italy, 19 (2010)Google Scholar
[10] Ioffe, A.F., Physics of Semiconductors, Infosearch London, 307 (1960)Google Scholar
[11] Brebrick, R.F., J. Phys. Chem. Solids 30, 719 (1969)Google Scholar
[12] Peranio, N., Winkler, M., Bessas, D., Aabdin, Z., König, J., Böttner, H., Hermann, R., Eibl, O., to be published Google Scholar
[13] Bos, J.W. G., Zandbergen, H.W., Lee, M.-H., Ong, N.P., and Cava, R. J., Phys. Rev. B. 75, 195203 (2007)Google Scholar
[14] Taylor, A., Mortensen, C., Rostek, R., Nguyen, N., Johnson, D. C., Journal of Electronic Materials, Special Issue: International Conference on Thermoelectrics 2009, 1981 (2009)Google Scholar
[15] Nurnus, J., Böttner, H., Beyer, H., Lambrecht, A., Proceedings of 18th International Conference on Thermoelectrics, USA, 696 (1999)Google Scholar
[16] Rowe, D.M., CRC Handbook of Thermoelectrics, CRC Press, 48-7, (2006)Google Scholar
[17] Abrikosov, N.H., Bankina, V.F., Poretskaya, L.V., Shelimova, L.E. and Skudnova, E.V., Semiconducting II-VI, IV-VI, and V-VI Compounds, Plenum Press, New York, 165 (1969)Google Scholar
[18] Venkatasubramanian, R., Colpitts, T., O´Quinn, B., Liu, S., El-Masry, N., Lamvik, M., Appl. Phys. Lett. 75, 1104 (1999)Google Scholar
[19] Rowe, D.M., CRC Handbook of Thermoelectrics, CRC press, chap. 19 (1995)Google Scholar
[20] Böttner, H., Chen, G., Venkatasubramanian, R., MRS Bulletin 31, 211 (2006)Google Scholar