Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:11:30.185Z Has data issue: false hasContentIssue false

Na Impurity Chemistry in Photovoltaic Cigs thin-Films: An Investigation with Photo- and Auger Electron Spectroscopies

Published online by Cambridge University Press:  10 February 2011

D. W. Niles
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden, CO 80401
K. Ramanathan
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden, CO 80401
J. Granata
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden, CO 80401
F. Hasoon
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden, CO 80401
R. Noufi
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden, CO 80401
B. J. Tielsch
Affiliation:
Chemistry Department, Kent State University, Kent, OH 44242
J. E. Fulghum
Affiliation:
Chemistry Department, Kent State University, Kent, OH 44242
Get access

Abstract

The incorporation of Na into Cu(Inl-xGax)Se2 thin-films is known to lead to an improvement in device performance. The authors use X-ray photoelectron and Auger electron spectroscopies to determine the chemical nature of Na in Cu(Inl-xGax)Se2 thin-films. The Na concentration is determined to be ∼ 0.1 atomic percent in the bulk of Cu(In1-xGax)Se2 thin-films. The Na is chemically bonded to Se. The authors propose a model invoking the replacement of column III elements by Na during the growth of Cu(Inl-xGax)Se2 thin-films. These Nain and NaGa defects act as acceptor states to increase the p-type conductivity of Cu(In1-xGax)Se2 thin-films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tuttle, J.R., Contreras, M., Gabor, A.M., Ramanathan, K.R., Tennant, A.L., Albin, D.S., Keane, J., Noufi, R., Prog. Photovoltaics 3, 383 (1995), and References therein.Google Scholar
2. Nadanau, V., Braunger, D., Hariskos, D., Kaiser, M., Köble, Ch., Oberacker, A., Ruckh, M., Rühle, U., Schdäfler, R., Schmid, D., Walter, T., Zweigart, S., Schock, H.W., Prog. Photovoltaics 3, 363 (1995), and References therein.Google Scholar
3. see The Handbook of Binary Phase Diagrams, Vol.5, compiled by Moffatt, W. G. (Genium Publishing Corp., 1984) for a phase diagram of Na-Se.Google Scholar
4. Hoppe, V.R., Lidecke, W., and Frorath, F.-C., Z. Anorg. Allg. Chemie 309, 4 (1961).Google Scholar
5. Niles, D.W., Ramanathan, K., Hasoon, F., Noufi, R., Tielsch, B.J., and Fulghum, J.E., J. Vac. Sci. Technology A 15, xxx (Dec. 1997).Google Scholar
6. Boyd, D.C. and Thompson, D. A., in Glass (Kirk-Othmer: Encyclopedia of Chemical Technology, Vol.11, 3rd edition, 1980), p. 807.Google Scholar
7. Handbook of Photoelectron Spectroscopy, edited by Christian, J. (Physical Electronics, Eden Prairie, 1992).Google Scholar
8. Heske, C., Richter, G., Chen, Z., Fink, R., Umbach, E., Riedl, W., and Karg, F., J. Appl. Phys. 82, 2411 (1997).Google Scholar
9. Practical Surface Analysis. 2nd edition, Vol. 1 Auger and X-ray Photoelectron Spectroscopy edited by Briggs, D. and Seah, M. P. (Wiley, New York, 1990), p. 587.Google Scholar
10. Barrie, A. and Street, F. J., J. Electron Spectros. Rel. Phenom. 7, 1 (1975).Google Scholar
11. Citrin, P. H., Phys. Rev. B 8, 5545 (1973).Google Scholar
12. Schellenberger, A., Schlaf, R., Pettenkofer, C., and Jaegermann, V., Solid State Ionics 66, 307 (1993).Google Scholar
13. Nakada, T., Iga, D., Ohbo, H., and Kunioka, A., Jap. J. Appl. Phys. 36 (1), 732 (1997).Google Scholar