Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:25:01.019Z Has data issue: false hasContentIssue false

Multifunctional GdPO4:Pr3+ nanocrystals displaying UV emission, visible emission, and magnetic properties

Published online by Cambridge University Press:  04 April 2014

Junsang Cho*
Affiliation:
Thin Film Materials Research Group, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Yuseong-gu, Daejeon 305-600, Korea.
Chang Hae Kim
Affiliation:
Thin Film Materials Research Group, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Yuseong-gu, Daejeon 305-600, Korea.
Get access

Abstract

Multifunctional Pr3+-doped GdPO4 nanocrystals possessing UV, visible emissions and magnetic properties were synthesized via co-precipitation and following annealing. It was revealed that as-prepared GdPO4 nanorods were transformed to nanoparticles after heat treatment at 900 °C for 2 hours. Ultimately, GdPO4:Pr3+ nanoparticles have strong UV emission under the excitation of 275 nm and visible emission under the excitation of 445 nm, which offers the optical modalities in both UV and visible range. Moreover, Gd3+-containing nanoparticles are efficient T2-weighted (negative) magnetic resonance (MR) contrast agents due to the presence of Gd3+ ions, which can be potentially applied as multimodal, photoluminescence-magnetic resonance imaging contrast agent.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cheon, J. and Lee, J.-H., Accounts of Chemical Research, 41, 16301640 (2008).CrossRefGoogle Scholar
Louie, A., Chemical Reviews, 110, 31463195 ( 2010).CrossRefGoogle Scholar
Kim, J., Piao, Y. and Hyeon, T., Chemical Society Reviews, 38, 372390 (2009).CrossRefGoogle Scholar
Ren, W., Tian, G., Zhou, L., Yin, W., Yan, L., Jin, S., Zu, Y., Li, S., Gu, Z. and Zhao, Y., Nanoscale, 4, 37543760 (2012).CrossRefGoogle Scholar
Hu, K.-W., Jhang, F.-Y., Su, C.-H. and Yeh, C.-S., Journal of Materials Chemistry, 19, 21472153 (2009).CrossRefGoogle Scholar
Huang, C.-C., Su, C.-H., Li, W.-M., Liu, T.-Y., Chen, J.-H. and Yeh, C.-S., Advanced Functional Materials, 19, 249258 (2009).CrossRefGoogle Scholar
Grzyb, T., Gruszeczka, A., Wiglusz, R. J., Sniadecki, Z., Idzikowski, B. and Lis, S., Journal of Materials Chemistry, 22, 2298922997 (2012).CrossRefGoogle Scholar
Debasu, M. L., Ananias, D., Pinho, S. L. C., Geraldes, C. F. G. C., Carlos, L. D. and Rocha, J., Nanoscale, 4, 51545162 (2012).CrossRefGoogle Scholar
Dorenbos, P., Journal of Luminescence, 91, 155176 (2000).CrossRefGoogle Scholar
Lezama, A. and de Araujo, C. B., Physical Review B, 34, 126130 (1986).CrossRefGoogle Scholar
Knowlton, G. D. and White, T. R., Clays and Clay Minerals, 29, 403411 (1981).CrossRefGoogle Scholar
Kijkowska, R., Thermochimica Acta, 404, 8188 (2003).CrossRefGoogle Scholar
Dumont, M. F., Baligand, C., Li, Y., Knowles, E. S., Meisel, M. W., Walter, G. A. and Talham, D. R., Bioconjugate Chemistry, 23, 951957 (2012).CrossRefGoogle Scholar
Terreno, E., Castelli, D. D., Viale, A. and Aime, S., Chemical Reviews, 110, 30193042 (2010).CrossRefGoogle Scholar