Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:16:35.823Z Has data issue: false hasContentIssue false

The Movement of Mobility Edges in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

S. Lee
Affiliation:
Center for Electronic Materials and Processing, Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
D. Heller
Affiliation:
Center for Electronic Materials and Processing, Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
C. R Wronski
Affiliation:
Center for Electronic Materials and Processing, Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Internal photoemission of both electrons and holes is used to investigate the movement of the mobility edges in high quality intrinsic, undoped hy-drogenated amorphous silicon (a-Si:H) with temperature and electrical field. The electron mobility edge is found to move up in energy by ∼40meV between 298K and 120K. On the other hand, the hole mobility edge remains essentially unchanged between 298K and 160K. The injection (and collection) of photoemitted holes is less efficient than that for electrons and in the films studied could not be measured below 160K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jackson, W. B., Kelso, S. M., Tsai, C. C., Allen, J. W., and Oh, S.-J., Phys. Rev. B 31 (8), 5187 (1985)Google Scholar
2. von Roedern, B., Ley, L., and Cardona, M., Phys. Rev. Lett. 39 (24), 1576 (1977)Google Scholar
3. Hack, M. and Shur, M.. J. Appl. Phys. 54 (10), 5858 (1985)Google Scholar
4. Spear, W. E., Al-Ani, Haifa, and TeComber, P. G., Philos. Mag. B 43, 781 (1981)Google Scholar
5. Wronski, C. R., Lee, S., Hicks, M., and Kumar, Satyendra, Phys. Rev. Lett. 63 (13), 1420. 1989 Google Scholar
6. Wronslci, C. R., Abeles, B., Cody, G. D., and Tiedje, T., Appl. Phys. Lett. 37 (1), 96 (1980)Google Scholar
7. Li, YT M., Malone, C., Wronski, C. R., Nguyen, H. V., and Collins, R. W., MRS Spring Meeting, San Francisco, 1990 Google Scholar
8. Wronski, C. R., Abeles, B.. and Cody, G. D., Solar Cells 2, 245 (1980)Google Scholar
9. Williams, R., Semiconductors and Semimetals, edited by Willard-son, R. K. and Beer, A. C. (Academic Press, New York, 1970). Vol. 6, Chap. 2Google Scholar
10. Bapat, D. R., Narasimhan, K. L., and Kuchibhotla, R., Philos. Mag. B 56 (1), 71 (1987)Google Scholar
11. Hicks, M., Lee, S., Kumar, Satyendra, and Wronski, C. R., Amorphous Silicon Technology — 1989, A. Madan, M. J. Thompson, P. C. Taylor, and P. G. LeComber, and Y. Hamakawa (Eds.), MRS Proc. Vol. 149, pp. 303Google Scholar
12. Weiser, G. and Mell, H., J. Non-Cryst. Sol. 114, 298 (1989)Google Scholar
13. Cody, G. D., Tiedje, T., Abeles, B., Brooks, B., and Goldstein, Y., Phys. Rev. Lett. 47 (20), 1480 (1981)Google Scholar
14. Jackson, W. B., Nemanich, R. J., Thompson, M. J., and Wacker, B., Phys. Rev. B 33, 6936 (1986)Google Scholar
15. Mariucci, L., Gislon, P., Coluzza, C., and Frova, A., J. Appl. Phys. 62 (8), 3285 (1987)Google Scholar