Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T03:23:44.914Z Has data issue: false hasContentIssue false

The Morphology of Blends of Linear and Branched Polyethylenes by Small-Angle Neutron and X-Ray Scattering

Published online by Cambridge University Press:  22 February 2011

J. D. Londono
Affiliation:
Oak Ridge National Laboratory, Oak Ridge TN 37830
G. D. Wignall
Affiliation:
Oak Ridge National Laboratory, Oak Ridge TN 37830
R. G. Alamo
Affiliation:
Oak Ridge National Laboratory, Oak Ridge TN 37830
L. Mandelkern
Affiliation:
Oak Ridge National Laboratory, Oak Ridge TN 37830
J. S.Lin
Affiliation:
Oak Ridge National Laboratory, Oak Ridge TN 37830
Get access

Abstract

The solid-state morphology and liquid-state homogeneity of blends of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) were investigated by small-angle neutron and x-ray scattering (SANS and SAXS). The solid state morphology was investigated as a function of composition and cooling rate from the melt. After slow cooling, the evidence indicated that the mixtures were either completely (HDPE-rich blends) or almost completely (LDPE-rich blends) phase separated into separate HDPE and LDPE lamellae over the whole compositional range. In contrast, for rapidly quenched blends the components are extensively co-crystallized for all concentrations, though the SANS data indicated that the branched component had a tendency to be preferentially located in the inter-lamellar regions. In the liquid state, the blends were homogenous at all compositions, showing that the solid state morphology is not determined by the melt structure, but is a function of the crystallization kinetics. Further evidence for blend homogeneity in the liquid is presented. In particular we examine the hypothesis that a phase separated mixture might give a scattering pattern similar to a homogenous blend if the domain sizes were larger that the maximum spatial resolution of the SANS experiment (D > 2π/Qmin ~ 2000Å). In this scenario, the differential scattering cross section dΣ/dΩ(Q) ~ Q-2, though phase separation decreases the cross section in this Q-range with respect to the homogenous blend. For HDPE/LDPE blends in the melt, this decrease in intensity was not observed, thus ruling out the possibility of phase separation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nugay, N., Tinçer, T., Eur. Polym. J 30, 473 (1994).Google Scholar
2 Stafford, B. S., S, B.., J. Appl. Polym. Sci. 9, 729 (1965).Google Scholar
3 Donatelli, A. A., J. Appl. Polym. Sci. 23, 3071 (1979).Google Scholar
4 Haghighat, S. A., Birley, A. W., Adv. Polym. Tech. 10, 143 (1990).Google Scholar
5 Fikhtner, R. R., Volkov, T. I., Shalatskaya, S. A., Trizno, M. S., Vysokomol. Soyed. A21, 2348 (1979); Polym. Sci. U.S.S.R. 21, 2596 (1980).Google Scholar
6 Yang, D. C., Brady, J. M., Thomas, E. L., J. Mat. Sci. 23, 2546 (1988).Google Scholar
7 Norton, D. R., D. R.;, A. Keller, J. Mat. Sci. 19, 447 (1984).Google Scholar
8 Reckinger, C., Larbi, F. C., Rault, J., J. Macromol Sci., Phys. B23, 511 (1984-85).Google Scholar
9 Clampitt, B. H., J. Polym. Sci., Polym. Chem. Ed. 3, 671 (1965).Google Scholar
10 Nicholson, J. C., Finerman, T. M., Crist, B., Polymer 31, 2287 (1990).Google Scholar
11 Malavašič, T., Musil, V., J. Therm. Anal. 34, 503 (1988).Google Scholar
12 Barham, P. J., Hill, M. J., Keller, A., Rosney, C. C. A., J. Mat. Sci. Lett. 7, 1271 (1988).Google Scholar
13 Hill, M. J., Barham, P. J., Keller, A., Rosney, C. C. A., Polymer 32, 1384 (1991).Google Scholar
14 Hill, M. J., Barham, P. J., Keller, C. C. A., Polymer 33, 2530, (1992).Google Scholar
15 Hill, M. J., Barham, P. J., Polymer 33, 4099 (1992).Google Scholar
16 Muller, A. J., Balsamo, V., Rosales, C. M., Polym. Networks Blends 2, 215 (1992).Google Scholar
17 Hill, M. J., Barham, P. J., van Ruiten, J., Polymer 34, 2975, (1993).Google Scholar
18 Barham, P. J., Hill, M. J., Goldbeck-Wood, J., van Ruiten, J., Polymer 34, 2981 (1993).Google Scholar
19 R., G. Alamo, J., D. Londono, L., Mandelkern, F., Stehling, G., D. Wignall, Macromolecules 27, 411 (1994).Google Scholar
20 Wignall, G. D., Londono, J. D., Lin, J. S., Alamo, R. G., Galante, M. J., Mandelkem, L., Stehling, F. C., Macromolecules (accepted).Google Scholar
21 Tashiro, K., Stein, R. S., Hsu, S. L., Macromolecules 25, 1801 (1992).Google Scholar
22 Tashiro, K., Satowski, M. M., Stein, R. S., Li, Y., Chu, B., Hsu, S. L., Macromolecules 25, 1809 (1992).Google Scholar
23 Stein, R. S., Mater Res. Symp. Proc., (in press).Google Scholar
24 Song, H. H., Stein, R. S., Wu, D. Q., Ree, M., Phillips, J. C., LeGrand, A., Chu, B., Macromolecules 21, 2384 (1988).Google Scholar
25 Song, H. H., Wu, D. Q., Chu, B., Satkowski, M., Ree, M., Stein, R. S., Phillips, J. C., Macromolecules 23, 2380 (1990).Google Scholar
26 Debye, P., Bueche, A. M., J. Appl. Phys. 20, 518 (1949).Google Scholar
27 Debye, P., Anderson, H. R., Brumberger, H., J. Appl. Phys. 28, 679 (1957).Google Scholar
28 Fernandez, A. M., Wignall, G. D., Sperling, L. H., ACS Advances in Chemistry Series 211, 153 (1986).Google Scholar
29 Schweizer, K. S., Macromolecules 26, 6033 (1993).Google Scholar
30 deGennes, P. G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979), Chapter 5.Google Scholar
31 Wignall, G. D., in Encyclopedia of Polymer Science and Engineering, 10 (Wiley and Sons, New York, 1987), p. 112.Google Scholar
32 Wignall, G. D., in Physical Properties of Polymers, edited by Mark, J. E. (ACS Books, Washington, DC., 1994), Chapter 7.Google Scholar
33 Rhee, J., Crist, B. C., Macromolecules 24, 5665 (1991).Google Scholar
34 Londono, J. D., Narten, A. H., Wignall, G. D., Honnell, K. G., Hsieh, E. T., Johnson, T. W., Bates, F. S., Macromolecules 27, 2864 (1994).Google Scholar
35 Flory, P. J., Principles of Polymer Chemistry (Cornell. Univ., Ithaca, New York, 1953).Google Scholar