Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:44:47.904Z Has data issue: false hasContentIssue false

Morphologically Well-defined Gold Nanoparticles Embedded in Thermo-Responsive Hydrogel Matrices

Published online by Cambridge University Press:  15 March 2011

Chun Wang
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, E25-342, Cambridge, MA 02139, U.S.A.
Nolan T. Flynn
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, E25-342, Cambridge, MA 02139, U.S.A.
Robert Langer*
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, E25-342, Cambridge, MA 02139, U.S.A.
*
*Corresponding author: [email protected]
Get access

Abstract

Nanocomposite materials consisting of colloidal gold (Au) nanoparticles embedded in thermo-responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogels are synthesized. Thiol groups that bind to both Au3+ ions and colloidal Au are incorporated into the side-chains of the PNIPAm hydrogels through copolymerization. This report describes formation of morphologically well-defined Au nanoparticles with varying long-term stability inside the hydrogel matrices containing adjustable concentrations of thiols. Compared with the non-Au containing PNIPAm hydrogels, the Au-PNIPAm nanocomposite hydrogels have shown higher degrees of equilibrium swelling and different temperature-triggered phase transitions. It is hypothesized that these remarkable changes in hydrogel bulk properties are related to the different morphologies and sizes, and possibly the amount of surface charges, of the Au nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bronstein, L. M., Top. Curr. Chem. 226, 55 (2003).Google Scholar
2. Mayer, A. B. R., Mark, J. E., Morris, R. E., Polym. J. 30, 197 (1998).Google Scholar
3. Crooks, R. M., Zhao, M., Sun, L., Chechik, V., Yeung, L. K., Acc. Chem. Res. 34, 181 (2001).Google Scholar
4. Ding, J. H. and Gin, D. L., Chem. Mater. 12, 22 (2000).Google Scholar
5. Biffis, A., D'Archivio, A. A., Jerabek, K., Schmid, G., Corain, B., Adv. Mat. 12, 190 (2000).Google Scholar
6. Choi, K. M. and Shea, K. J., J. Am. Chem. Soc. 116, 9052 (1994).Google Scholar
7. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H., Zhang, J., Annu. Rev. Biomed. Eng. 2, 9 (2000).Google Scholar
8. Bronstein, L. M., Platonova, O. A., Yakunin, A. N., Yanovskaya, I. M., Valetsky, P. M., Dembo, A. T., Makhaeva, E. E, Mironov, A. V., Khokhlov, A. R., Langmuir 14, 252 (1998).Google Scholar
9. Biffis, A., Orlandi, N., Corain, B., Adv. Mat. 15, 1551 (2003).Google Scholar
10. Hoffman, A. S., MRS Bulletin Sep. 1991, p. 42.Google Scholar
11. Chen, C.-W., Chen, M.-Q., Serizawa, T., Akashi, M., Chem. Commun. 831 (1998).Google Scholar
12. Holtz, J. H. and Asher, S. A., Nature 389, 829 (1997).Google Scholar
13. Sheeney-Haj-Ichia, L., Sharabi, G., Willner, I., Adv. Functional Mater. 12, 27 (2002).Google Scholar
14. Sershen, S. R., Westcott, S. L., West, J. L., Halas, N. J., Appl. Phys. B 73, 379 (2001).Google Scholar
15. Flory, P. J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).Google Scholar
16. Bowmaker, G. A. and Dobson, B. C., J. Chem. Soc., Dalton Trans.: Inorganic Chem. 1, 267 (1981).Google Scholar
17. Rao, C. N. R., Kulkarni, G. U., Govindaraj, A., Satishkumar, B. C., Thomas, P. J., Pure Applied Chem. 72, 21 (2000).Google Scholar
18. Creighton, J. A. and Eadon, D. G., Chem. Commun. 87, 3881 (1991).Google Scholar
19. Blatchford, C. G., Campbell, J. R., Creighton, J. A., Surface Sci. 120, 435 (1982).Google Scholar
20. Cleland, W. W., Biochemistry 3, 480 (1964).Google Scholar
21. Hyning, D. L. Van, Klemperer, W. G., Zukoski, C. F., Langmuir 17, 3120 (2001).Google Scholar
22. Plunkett, K. N., Kraft, M. L., Yu, Q., Moore, J. S., Macromolecules 36, 3960 (2000).Google Scholar
23. Katchalsky, A., Lifson, S., Eisenberg, H., J. Polym. Sci. 7, 571 (1951).Google Scholar
24. Vakkalanka, S. K., Brazel, C. S., Peppas, N. A., J. Biomater. Sci. Polym. Ed. 8, 119 (1996).Google Scholar
25. Gutowska, A., Bae, Y. H., Jacobs, H., Feijen, J., Kim, S. W., Macromolecules 27, 4167 (1994).Google Scholar