Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T18:59:22.861Z Has data issue: false hasContentIssue false

Morphological Instabilities during Explosive Crystallization of Germanium Films

Published online by Cambridge University Press:  17 March 2011

Aleksandra Chojnacka
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Michael O. Thompson
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

Explosive crystallization, a self-sustaining transformation of an amorphous phase to a crystalline phase mediated by a thin liquid layer, exhibits three distinct kinetic and morphological regimes in germanium. Dynamics of these growth processes and the resulting morphologies have been examined in detail. Steady-state crystallization velocities were measured as a function of heat loss into the substrate. Dark field optical microscopy, tapping mode atomic force microscopy, transmission electron microscopy, and x-ray diffraction were used to examine the crystallized films. Analyses of the experimental results provide evidence for two distinct processes governing explosive crystallization in limits of high substrate temperature (low heat loss) and low substrate temperature (high heat loss). The low temperature growth mode produces a “scalloped” structure with propagation velocities that monotonically increase with temperature. At high substrate temperatures, the velocity is independent of temperature and a “columnar” pattern with preferred texture is formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gore, G., Philos. Mag. 9, 73 (1855).Google Scholar
2. Coffin, C.C. and Johnston, S., Proc. Roy. Soc. A 146, 564 (1934).Google Scholar
3. Kuz'menko, V.M., Mel'nikov, V.I., and Rakhubovskii, V.A., Sov. Phys. JETP 59, 612 (1984).Google Scholar
4. Das, V.D. and Lakshmi, P.J., Phys. Rev. B 37, 720 (1988).Google Scholar
5. Willems, G.J., Wouters, D.J., and Maes, H.E., J. Appl. Phys. 74, 5196 (1993).Google Scholar
6. Bensahel, D. and Auvert, G. in Laser-Solid Interact. Transient Therm. Process. Mater. eds. Narayan, J., Brown, W.L., and Lemons, R.A., (Mater. Res. Soc. Symp. Proc. 13, New York, NY, 1983) pp. 165176.Google Scholar
7. Andrä, G., Bergmann, J., Falk, F., Ose, E., and Stafast, H., Phys. Status Solidi A 166, 629 (1998).Google Scholar
8. Andrä, G., Falk, F., Muhlig, C., Kalbac, A., and Cerny, R., Appl. Phys. A (Mater. Sci. Process.) A67, 513 (1998).Google Scholar
9. Lee, M., Moon, S., Hatano, M., Suzuki, K., and Grigoropoulos, C.P., J. Appl. Phys. 88, 4994 (2000).Google Scholar
10. Vega, F., Solis, J., Siegel, J., and Alfonso, C.N., J. Appl. Phys. 88, 6321 (2000).Google Scholar
11. Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing-1978 eds. Ferris, S.D., Leamy, H.J., and Poate, J.M. (American Institute of Physics Conf. Proc. No. 50, New York, 1979) p. 73; B.G. Bagley and H.S. Chen, ibid, p. 97.Google Scholar
12. Takamori, T., Messier, R., and Roy, R., Appl. Phys. Lett. 5, 201 (1972).Google Scholar
13. Takamori, T., Messier, R., and Roy, R., J. Mater. Sci. 8, 1809 (1973).Google Scholar
14. Koba, R. and Wickersham, C.E., Appl. Phys. Lett. 40, 672 (1982).Google Scholar
15. Leamy, H.J., Brown, W.L., Celler, G.K., Foti, G., Gilmer, G.H., and Fan, J.C.C., Appl. Phys. Lett. 38, 137 (1981).Google Scholar
16. Leamy, H.J., Brown, W.L., Celler, G.K., Foti, G., Gilmer, G.H., and Fan, J.C.C. in Laser Electron-Beam Solid Interact. Mater. Process. eds. Gibbons, J.F., Hess, L.D., and Sigmon, T.W., (Mater. Res. Soc. Symp. Proc. 1, Amsterdam, Netherlands, 1981) pp. 8996.Google Scholar
17. Sharma, R.K., Bansal, S.K., Nath, R., Mehra, R.M., Bahadur, K., Mall, R.P., Chaudhary, K.L., and Garg, C.L., J. Appl. Phys. 55, 387 (1984).Google Scholar
18. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
19. Yu, Q., Thompson, M.O., and Clancy, P., Phys. Rev. B 53, 8386 (1996).Google Scholar
20. Bostanjoglo, O. and Endruschat, E., Phys. Stat. Sol. A 91, 17 (1985).Google Scholar
21. Cesari, C., Nihoul, G., Marfaing, J., Marine, W., and Mutaftschiev, B., J. Appl. Phys. 57, 5199 (1985).Google Scholar
22. Cesari, C., Nihoul, G., Marfaing, J., Marine, W., and Mutaftschiev, B., Surface Sci. 162, 724 (1985).Google Scholar
23. Bostanjoglo, O., Endruschat, E., and Tornow, W. in Materials Issues in Silicon Integrated Circuit Processing Symposium eds. Wittmer, M., Stimmell, J., and Strathman, M., (Mater. Res. Soc. Symp. Proc. 71, Pittsburgh, PA, 1983) pp. 345350.Google Scholar
24. Parsons, J.R. and Hoelke, C.W., Philos. Mag. 50, 329 (1984).Google Scholar
25. Pierrard, P., Mutaftschiev, B., Marine, W., Marfaing, J., and Salvan, F., Thin Solid Films 111, 141 (1984).Google Scholar
26. Yater, J.A., Ph.D. Thesis, Cornell University, 1992.Google Scholar