Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:18:47.890Z Has data issue: false hasContentIssue false

Morphological, Chemical and Structural Study of Sputtered Al/Al2O3 Multilayers

Published online by Cambridge University Press:  10 February 2011

C. Le Paven-Thivet
Affiliation:
L.P.S.C., UMR CNRS 8635, Meudon, France, [email protected]
P. Aubert
Affiliation:
L.P.S.C., UMR CNRS 8635, Meudon, France, [email protected]
S. Fusil
Affiliation:
L.M.N., Université Evry, Evry, France
A. Zozime
Affiliation:
L.M.N., Université Evry, Evry, France
C. Malibert
Affiliation:
L.P.S.C., UMR CNRS 8635, Meudon, France, [email protected]
Ph. Houdy
Affiliation:
L.P.S.C., UMR CNRS 8635, Meudon, France, [email protected]
Get access

Abstract

For purpose of enhancement of mechanical properties, Al/Al2O3 films, with thickness A in the nanometric scale, were deposited on silicon substrate by reactive rf sputtering, at substrate temperatures Ts ranging from −90°C to 600°C. The characterisation (FEG-SEM, AFM, SIMS, XRR) has shown that Al/Al2O3 films are granular and rough, in correlation with the behavior of single alumnium films. The minimal roughness values are obtained at low Ts (−90°C and 25°C). The Λ = 20 rim-films are real multilayers, as confirmed by SIMS and XRR. Nevertheless, the multilayering character, i.e. the existence of multilayers, decreases when Ts increases. At low Ts, the relevant parameter to explain the weakness of stratification of Al/Al2O3 films is the roughness of layers, while at high Ts, the chemical interdiffusion clearly dominates, resulting in a no periodic structure at Ts = 600°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hall, E.O., Proc. Phys. Soc. London B64, p.747 (1951)10.1088/0370-1301/64/9/303Google Scholar
2 Petch, N.J., J. Iron Steel Inst. 174, p.25 (1953)Google Scholar
3 Koehler, S., Phys. Rev. B 2, p.547 (1970)10.1103/PhysRevB.2.547Google Scholar
4 Daia, M. Ben, Aubert, P., Labdi, S., Sant, C., Sadi, F.A., Houdy, Ph., Bozet, J.L., J. Appl. Phys., accepted for publication (2000)Google Scholar
5 Ding, Y., Northwood, D.O., Nalpas, A.T., Surf. and Coatings Technol. 62, p.448 (1993)10.1016/0257-8972(93)90282-SGoogle Scholar
6 Mearini, G.T., Hoffman, R.W., J. Elec.Mater. 22, p.623 (1993)10.1007/BF02666408Google Scholar
7 Holy, V., Pietsch, U., Baumbach, T., High resolution X-ray scattering from thin films and multilayers, Springer Tracts in Modemn Physics, Berlin, p. 130 (1999)Google Scholar
8 Paven-Thivet, C. Le, Malibert, C., Albouy, P.A., Houdy, Ph., Thin Solid Films 336, p. 373 (1998)10.1016/S0040-6090(98)01288-7Google Scholar
9 Thornton, J.A., J. Vac. Sci. Technol. 11, p.666 (1974)10.1116/1.1312732Google Scholar
10 Smith, D.L., Thin-film deposition, principles and practice, McGraw-Hill Inc. Editor, New York p.170 (1995)Google Scholar
11 Garcia-Mendes, M., Valles-Villarreal, N., Hirata-Flores, G.A., Farias, M.H., Appl. Surf. Science 151, p. 139 (1999)10.1016/S0169-4332(99)00133-6Google Scholar
12 Sant, C., Daia, M. Ben, Labdi, S., Houdy, Ph., Surf. Coat. Technol., accepted for publication (2000)Google Scholar
13 Hakkens, F., Veirman, A. De, Coene, W., Broeder, F.J.A den, J. Mater. Res. 8, p. 1019 (1993)10.1557/JMR.1993.1019Google Scholar