Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T23:22:03.166Z Has data issue: false hasContentIssue false

Monte Carlo Simulations of Surface Segregation in Cu Ni Alloys

Published online by Cambridge University Press:  01 January 1992

A. Pasturel
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques, ENSEEG BP75, 38402 Saint Martin d' Hères, France
V. Drchal
Affiliation:
Institute of Physics, Czechoslovak Academy of Sciences, CS-180 40 Praha 8, Czechoslovakia
J. Kudrnovsky
Affiliation:
Institute of Physics, Czechoslovak Academy of Sciences, CS-180 40 Praha 8, Czechoslovakia Institut für Technische Elektrochemie, Technische Universität, A-1060 Wien, Austria
P. Weinberger
Affiliation:
Institut für Technische Elektrochemie, Technische Universität, A-1060 Wien, Austria
Get access

Abstract

A new method coupling electronic structure calculations with Monte Carlo simulations has been developed to determine surface compositions in Cu-Ni alloys. The calculations are based on an effective Ising model with parameters as defined within the framework of the Generalized Perturbation Method (GPM) and as calculated by means of the tight-binding version of the linear muffin-tin orbital method. The composition profiles are obtained for the fcc(OOl) surface for three bulk compositions, namely Cu75Ni25, Cu50Ni50, and Cu25Ni75 and compared with available experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drchal, V., Kudrnovsky, J., Utvardi, L., Weinberger, P., and Pasturel, A., Phys. Rev. B, 45, 14328 (1992)Google Scholar
2. Kudrnovsky, J., Bose, S.K., and Drchal, V., Phys. Rev. Lett. 69, 308 (1992)Google Scholar
3. Kudrnovsky, J., Turek, I., Drchal, V., Weinberger, P., Bose, S.K., and Pasturel, A., Phys. Rev. B, submittedGoogle Scholar
4. Pasturel, A., Drchal, V., Kudrnovsky, J., and Weinberger, P., Phys. Rev. B , submittedGoogle Scholar
5. Andersen, O.K. and Jepsen, O., Phys. Rev. Lett. 53, 2571 (1984)Google Scholar
6. Ducastelle, F. and Gautier, F., J. Phys. F 6, 2039 (1976)Google Scholar
7. Ducastelle, F., Legrand, B., and Treglia, G., Prog. Theor. Phys. (Suppl.) 101, 159 (1990)Google Scholar
8. Weber, R., Rojas, C.E., Dobson, P.J., and Chadwick, D., Surf. Sci., 105, 20 (1981)Google Scholar
9. Ng, Y.S., Tsong, T.T., and McLane, S.B. Jr., Phys. Rev. Lett. 42, 588 (1979)Google Scholar
10. Brongersma, H.H., Ackermans, P.A.J., and van Langeveld, A.D., Phys. Rev. B 34, 5976 (1986)Google Scholar
11. Sakurai, T., Hashizume, T., Jimbo, A., Sakai, A., and Hyodo, S., Phys. Rev. Lett. 55, 514 (1985)Google Scholar