Published online by Cambridge University Press: 15 February 2011
A computer program MODEX has been developed to predict the evolution of the irradiation defects in materials during ion implantation and subsequent annealing. The evolution of the defect clusters is simulated through a number of trapping and dissociation events. Two examples of the program application are presented: (1) 1 keV helium ion implantation in molybdenum up to doses of 1013 cm-2 with the subsequent ramp annealing up to 1400 K; and (2) 2.5 keV helium ion implantation in silicon with 1016 cm-2 with ramp annealing up to 1600 K. The simulation results are compared to the experimental results obtained by gas desorption techniques. The threshold dose needed for micro-cavity formation in silicon is discussed.