Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T23:15:44.475Z Has data issue: false hasContentIssue false

Monte Carlo simulation of Boron diffusion during low energy implantation and high temperature annealing

Published online by Cambridge University Press:  15 February 2011

M.-J. Caturla
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA-94550
T. Diaz de la Rubia
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA-94550
J. Zhu
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA-94550
M. Johnson
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA-94550
Get access

Abstract

We use a kinetic Monte Carlo model to simulate the implantation of low energy Boron in Silicon, from 0.5 to 1 keV, at high doses, 1015 ions/cm2. The damage produced by each ion is calculated using UT-Marlowe, based on a binary collision approximation. During implantation at room temperature,, silicon self-interstitials, vacancies and boron interstitials are allowed to migrate and interact. The diffusion kinetics of these defects and dopants has been obtained by ab initio calculations as well as Stillinger Weber molecular dynamics. Clustering of both self-interstitials, vacancies and boron atoms is included. We also model the diffusion of the implanted dopants after a high temperature annealing in order to understand the transient enhanced diffusion (TED) phenomenon. We observe two different stages of TED During the first stage vacancies are present in the lattice together with interstitials and the diffusion enhancement is small. The second stage starts after all the vacancies disappear and gives rise to most of the final TED.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 1994)Google Scholar
2. Foad, M., England, J., Moffatt, S., Armour, D., Ion Implantation Technology, Austin Tx, June 96Google Scholar
3. Singer, P., Semicond. Internat. June, 7280 (1996)Google Scholar
4. Collart, E. J. H., Gravesteijn, D.J., Lathouwers, E. G. C. and Kersten, W., Mat. Res. Soc. Symp. Proc. Vol 378, 115 (1995)Google Scholar
5. Chen, S. M., Gwilliam, R. M., Sealy, B. J., Solid State Electronics 41, 535 (1997)Google Scholar
6. Jones, E. C., Cheung, N. W., IEEE Electron Device Letters 14, 444 (1993)Google Scholar
7. Takenshi, D., Shimada, N., matsuo, J. and Yamada, I., Ion. Impl. Tech. 96 (Austin June 2124, 1996)Google Scholar
8. Cowern, N., In these proceedings.Google Scholar
9. Subrahmanyan, R., Massoud, H. Z., Fair, R. B., J. Electrochem. Soc. 137,.1573 (1990)Google Scholar
10. Agarway, A., in these proceedings.Google Scholar
11. Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991)Google Scholar
12. Fahey, M., Griffin, P. B., Plummer, J. D., Reviews on Modern Physics, 61, 289 (1989)Google Scholar
13. Bedrossian, P., Caturla, M-J, Diaz de la Rubia, T., Appl. Phys. Lett. 70, 176 (1997)Google Scholar
14. Plummer, J., Griffin, P. B., Nucl. Instrum. And Methods B102, 161 (1995)Google Scholar
15. Pinto, M. R., Bouling, D. M., Rafferty, C. S.. Smith, R. K., Coughran, W. M. Jr, Kizilyalli, I. C. and Thoma, M. J., Proc. IEDM- 92, 923 (1992)Google Scholar
16. Duane, M., Neuman, P., ter Beek, M., Subrahmanyan, R. in Proceedings of the Third Inter. Wokshop on the Maeas. and Character, of Ultra-Shallow doping profiles in Semiconductors, p. 5, March 1995 Google Scholar
17. Heinisch, H.L., Nucl. Instrum. And Methods B102, 47 (1995)Google Scholar
18. Jaraiz, M., Gilmer, G. H., Diaz de la Rubia, T., Appl. Phys. Lett. 68, 409 (1996)Google Scholar
19. Pelaz, L., Gilmer, G. H., Appl. Phys. Lett. (in press)Google Scholar
20. Zhu, J., in this proceedingsGoogle Scholar
21. Zhu, J., Diaz de la Rubia, T., Maihot, C., Phys. Rev. B54, 4741 (1996)Google Scholar
22. Borg, R J., Dienes, G. J., Introduction to Solid State Diffusion, Academic Press, INC, San Diego (1988)Google Scholar
23. Caturla, M-J, Diaz de la Rubia, T., Mat. Res. Soc. Boston (1996) in pressGoogle Scholar
24. Gilmer, G. H., Diaz de la Rubia, T., Jaraiz, M., Nucl. Instrum. and Methods B102 257 (1995)Google Scholar
25. Tian, S., Morris, S. J., Obradovic, B., Morris, M.F., Wang, G., Balamurugan, G., Tasch, A. F., Snell, C., UT-Marlowe, Version 4.0Google Scholar