Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:55:00.008Z Has data issue: false hasContentIssue false

Monodisperse Pt-Cu Nanocubes:Synthesis, Characterization, and Electrochemical Properties

Published online by Cambridge University Press:  31 January 2011

Dan Xu
Affiliation:
[email protected], State University of New York at Binghamton, Binghamton, New York, United States
Hongzhou Yang
Affiliation:
[email protected], Miami University, Oxford, Ohio, United States
Shouzhong Zou
Affiliation:
[email protected], Miami University, Oxford, Ohio, United States
Jiye Fang
Affiliation:
[email protected], United States
Get access

Abstract

High-quality Pt-Cu nanocubes were prepared through simultaneous reduction of platinum (II) acetylacetonate and copper II) acetylacetonate in 1-octadecene by 1,2–tetradecanediol in the presence of tetraoctylammonium bromide, oleylamine, and 1-dodecanethiol. The growth process of Pt-Cu nanocubes was explored based on the observation of intermediates. The electrocatalytic behavior indicates that cubic Pt-Cu nanocrystals are more active than spherical Pt-Cu nanocrystals and Pt nanocrystals towards methanol oxidation reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Narayanan, R., El-Sayed, M. A., J. Phys. Chem. B, 107, 1241612424 (2003).Google Scholar
2 Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M., Adzic, R. R., Angew. Chem. Int. Ed. 44, 21322135 (2005).Google Scholar
3 El-Deab, M. S., Ohsaka, T., Angew. Chem. Int. Ed. 45, 59635966 (2006).Google Scholar
4 Bell, A. T., Science 299, 16881691 (2003).Google Scholar
5 Roucoux, A., Schulz, J., Patin, H., Chem. Rev. 102, 37573778 (2002).Google Scholar
6 Narayanan, R., El-Sayed, M. A., J. Am. Chem. Soc. 126, 71947195 (2008).Google Scholar
7 Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y., Wang, Z. L., Science 316, 732735 (2007).Google Scholar
8 Narayanan, R., El-Sayed, M. A., Nano. Lett. 4, 13431348 (2004).Google Scholar
9 Markovic, N. M., Gasteiger, H. A., Philip, J. Ross, N., J. Phys. Chem. 99, 34113415 (1995).Google Scholar
10 Kinoshita, K., J. Electrochem. Soc. 137, 845848 (1990).Google Scholar
11 Lee, H., Habas, S. E., Kweskin, S., Butcher, D., Somorjai, G. A., Yang, P., Angew. Chem. Int. Ed. 45, 78247828 (2006).Google Scholar
12 Song, H., Kim, F., Connor, S., Somorjai, G. A., Yang, P., J. Phys. Chem. B 109, 188193 (2005).Google Scholar
13 Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A., El-Sayed, M. A., Science 272, 19241925 (1996).Google Scholar
14 Teng, X., Yang, H., Nano. Lett. 5, 885891 (2005).Google Scholar
15 Chen, J., Herricks, T., Xia, Y., Angew. Chem. Int. Ed. 44, 25892592 (2005).Google Scholar
16 Mayers, B., Jiang, X., Sunderland, D., Cattle, B., Xia, Y., J. Am. Chem. Soc. 125, 1336413365 (2003).Google Scholar
17 Chen, J., Herricks, T., Geissler, M., Xia, Y., J. Am. Chem. Soc. 126, 1085410855 (2004).Google Scholar
18 Jacob, T. III, W. A. G. , J. Phys. Chem. B 108, 83118323 (2004).Google Scholar
19 Park, K.-W., Choi, J.-H., Kwon, B.-K., Lee, S.-A., Sung, Y.-E., Ha, H.-Y., Hong, S.-A., Kim, H., Wieckowski, A., J. Phys. Chem. B 106, 18691877 (2002).Google Scholar
20 Liu, Z., Yu, C., Rusakova, I. A., Huang, D., Strasser, P., Top. Catal. 49, 241250 (2008).Google Scholar
21 Paulus, U. A., Wokaun, A., Scherer, G. G., Schmidt, T. J., Stamenkovic, V., Markovic, N. M., Ross, P.N., Electrochim. Acta 47, 37873798 (2002).Google Scholar
22 Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G., Ross, P. N., Markovic, N. M., Nat. Mater. 6, 241247 (2007).Google Scholar
23 Arola, E., Barnes, C. J., Rao, R. S., Bansil, A., P. M Surf. Sci. 249, 281288 (1991).Google Scholar
24 Toshima, N., Wang, Y., Langmuir 10, 45744580 (1994).Google Scholar
25 Schaak, R. E., Sra, A. K., Leonard, B. M., Cable, R. E., Bauer, J. C., Han, Y.-F., Means, J., Teizer, W., Vasquez, Y., Funck, E. S., J. Am. Chem. Soc. 127, 35063515 (2005).Google Scholar
26 Lim, B., Jiang, M., Camargo, P. H., Cho, E. C., Tao, J., Lu, X., Zhu, Y., Xia, Y., Science 324, 13021305 (2009).Google Scholar
27 Chen, G., Xia, D., Nie, Z., Wang, Z., Wang, L., Zhang, L., and Zhang, J., Chem. Mater. 19, 18401844 (2007)Google Scholar
28 Murray, C. B., Kagan, C. R., Bawendi, M. G., Annu. Rev. Mater. Sci. 30, 545610 (2000).Google Scholar
29 Xiong, Y., Xia, Y., Adv. Mater. 19, 33853391 (2007).Google Scholar
30 Zhang, J., Sun, K., Kumbhar, A., Fang, J., J. Phys. Chem. C 112, 54545458 (2008).Google Scholar
31 Wang, Z. L., J. Phys. Chem. B 104, 11531175 (2000).Google Scholar