Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T09:45:04.953Z Has data issue: false hasContentIssue false

Molecular Recognition Mechanisms of Calmodulin Examined by Perturbation-Response Scanning

Published online by Cambridge University Press:  21 March 2011

A. Ozlem Aykut
Affiliation:
Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
Ali Rana Atilgan
Affiliation:
Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
Canan Atilgan
Affiliation:
Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
Get access

Abstract

We analyze the apo and holo calmodulin (CaM) structures by sequentially inserting a perturbation on every residue of the protein, and monitoring the linear response. Residue crosscorrelation matrices obtained from 20 ns long molecular dynamics simulation of the apo-form are used as the kernel in the linear response. We determine two residues whose perturbation equivalently yields the experimentally determined displacement profiles of CaM, relevant to the binding of the trifluoperazine (TFP) ligand. They reside on structurally equivalent positions on the N- and C-terminus lobes of CaM, and are not in direct contact with the binding region. The direction of the perturbation that must be inserted on these residues is an important factor in recovering the conformational change, implying that highly selective binding must occur near these sites to invoke the necessary conformational change.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ikura, M., Ames, J.B., Proc. Natl. Acad. Sci. 103, 11591164 (2006).Google Scholar
2. Fallon, J.L., Quicho, F.A., Structure 11, 13031307 (2003).Google Scholar
3. Vandonselaar, M., Hickie, R.A., Quail, W.J. and Delbaere, T.J., Struct. Biol. 1, 795801 (1994).Google Scholar
4. Shepherd, C.M. and Vogel, H.J., Biophys. J. 87, 780791 (2004).Google Scholar
5. Atilgan, C., Atilgan, A.R., PLoS Comput. Biol. 5, e1000544 (2009).Google Scholar
6. Ikeguchi, M., Ueno, J., Sato, M., and Kidera, A., Phys. Rev. Lett. 94, 078102 (2005).Google Scholar
7. Yilmaz, L.S., Atilgan, A.R., Chem, J.. Phys. 113, 44544464 (2000).Google Scholar
8. Atilgan, C., Gerek, Z.N., Ozkan, S.B., Atilgan, A.R., Biophys. J. 99, 933943 (2010).Google Scholar
9. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., et al. ., Biophys. J. 80, 505515 (2001).Google Scholar
10. Baysal, C., Atilgan, A.R., Proteins. 45 6270 (2001).Google Scholar
11. Baysal, C., Atilgan, A.R., Proteins. 43, 150 160 (2001).Google Scholar
12. Babu, Y.S., Bugg, C.E., Cook, W.J., J.Mol.Biol. 204, 191204 (1988).Google Scholar
13. Humphrey, W., Dalke, A., Schulten, K., J. Mol. Graph. 14, 3338(1996).Google Scholar
14. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., et al. , J. Comput. Chem. 26, 17811802 (2005).Google Scholar
15. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., et al. , J. Comput. Chem. 4, 187217 (1983).Google Scholar
16. Darden, T., Perera, L., Li, L.P., Pedersen, L., Struc. Fold.Des. 7, R55R60 (1999).Google Scholar