Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:07:28.177Z Has data issue: false hasContentIssue false

A Molecular Rebonding Bistable Defect in Silicon: the Interstitial Carbon-Substitutional Carbon Pair

Published online by Cambridge University Press:  26 February 2011

L. W. Song
Affiliation:
Department of Physics and Sherman Fairchild Laboratory, Lehigh University, Bethlehem, PA 18015
X. D. Zhan
Affiliation:
Department of Physics and Sherman Fairchild Laboratory, Lehigh University, Bethlehem, PA 18015
B. W. Benson
Affiliation:
Department of Physics and Sherman Fairchild Laboratory, Lehigh University, Bethlehem, PA 18015
G. D. Watkins
Affiliation:
Department of Physics and Sherman Fairchild Laboratory, Lehigh University, Bethlehem, PA 18015
Get access

Abstract

A new type of bistable center is observed in electron-irradiated Si and identified as an interstitial carbon-substitutional carbon pair by combining several spectroscopic techniques. In the positive and negative charge states, the stable configuration of the defect involves a carbon-silicon interstitialcy (each atom 3-fold coordinated) next to a 4-fold coordinated substitutional C atom. In the neutral state, the defect rearranges its bonds so that both C atoms are substitutional (4-fold coordinated) with a 2- fold coordinated Si atom nestled between. Configurational coordinate energy surfaces are determined for each of the three charge states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

1.Jellison, G. E. Jr,J. Appl. Phys. 53, 5715(1982).Google Scholar
2.Benton, J. L. and Levinson, M., in Defects in Semiconductors II, ed. by Mahajan, S. and Corbett, J. W. (MRS Society Proc. Vol. 14, North Holland, New York, 1983), p. 9 5.Google Scholar
3.Chantre, A. and Bois, D., Phys. Rev. B31, 7979(1985).Google Scholar
4.Watkins, G. D. and Corbett, J. W., Phys. Rev. 121, 1001(1961).Google Scholar
5.Kimerling, L. C., Inst. Phys. Conf. Ser. No. 31, 221(1977).Google Scholar
6.Asom, M. T., Benton, J. L., Sauer, R., and Kimerling, L. C., Appl. Phys. Lett. 51 256(1987).Google Scholar
7.Song, L. W., Benson, B. W., and Watkins, G. D., Appl. Phys. Lett. 51, 1155(1987).Google Scholar
8.Brower, K. L., Phys. Rev. B9, 2607(1974).Google Scholar
9.Song, L. W., Zhan, X. D., Benson, B. W., and Watkins, G. D., Submitted to Phys. Rev. Lett.Google Scholar
10.Watkins, G. D. and Brower, K. L., Phys. Rev. Lett. 36, 1329(1976).Google Scholar
11.Song, L. W. and Watkins, G. D., B. Am. Phys. Soc. 32, 403(1987).Google Scholar
12.Watkins, G. D., in Effects of Radiation on Semiconductors, ed. by Dunod, (Academic Press, New York, 1965), p.97.Google Scholar
13. K. P. O'Donnell, Lee, K. M., and Watkins, G. D., Physica B116, 248(1983).Google Scholar