Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:37:15.952Z Has data issue: false hasContentIssue false

Molecular Dynamics Study on Resolution in Nanoimprint Lithography for Glass Material

Published online by Cambridge University Press:  31 January 2011

Kazuhiro Tada
Affiliation:
[email protected], Department of Physics and Electronics, Graduate school of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
Masaaki Yasuda
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Japan
Yoshihisa Kimoto
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Japan
Hiroaki Kawata
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Japan
Yoshihiko Hirai
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Japan
Get access

Abstract

A theoretical study of resolution in nanoimprint lithography (NIL) has been carried out using molecular dynamics (MD) simulation. We have performed a MD simulation for glass NIL, monitored the friction force during entire NIL process and evaluated the deformed shapes of glass patterns after the mold releasing. The resolution in NIL is governed by the maximum tensile stress acting on the glass, which is induced by the friction force during the mold releasing. Based on the distribution of average number density of atoms in the molded glass, the ultimate resolution in the glass NIL has been proved to be 0.4 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chou, S. Y. Krauss, P. R. and Renstrom, P. J.: Appl. Phys. Lett. 67, 3114(1995).Google Scholar
2 Chou, S. Y. Krauss, P. R. and Renstrom, P. J.: J. Vac. Sci. Technol. B 14, 4129(1996).Google Scholar
3 Chou, S. Y. Krauss, P. R. and Renstrom, P. J.: Science 272, 85(1996).Google Scholar
4 Hirai, Y. Kanakugi, K. Yamaguchi, T. Yao, K. Kitagawa, S. and Tanaka, Y.: Microelectronic Eng. 67-68, 237(2003).Google Scholar
5 Okinaka, M. Tsukagoshi, K. and Aoyagi, Y.: J. Vac. Sci. Technol. B 24, 1402(2006).Google Scholar
6 Akiba, S. Hara, W. Watanabe, T. Matsuda, A. Kasahara, M. and Yoshimoto, M.: Appl. Surf. Sci. 253, 4512(2007).Google Scholar
7 Akita, Y. Watanabe, T. Hara, W. Matsuda, A. and Yoshimoto, M.: Jpn. J. Appl. Phys. 46, L342 (2007).Google Scholar
8 Peroz, C. Heitz, C. Barthel, E. Søndergård, E., and Goletto, V.: J. Vac. Sci. Technol. B 25, L27 (2007).Google Scholar
9 Hua, F. Sun, Y. Gaur, A. Meitl, M. A. Bilhaut, L. Rotkina, L. Wang, J. Geil, P. Shim, M. and Rogers, J. A.: Nano Lett. 4, 2467(2004).Google Scholar
10 Hua, F. Gaur, A. Sun, Y. Word, M. Jin, N. Adesida, I. Shim, M. Shim, A. and Rogers, J. A.: IEEE Trans. Nanotechnol. 5, 301(2006).Google Scholar
11 Jain, H. and Vlcek, M.: J. Non-Cryst. Solids. 354, 1401(2008).Google Scholar
12 Hsu, Q. C. Wu, C. D. and Fang, T. H.: Jpn. J. Appl. Phys. 43, 7665(2004).Google Scholar
13 Hsu, Q. C. Wu, C. D. and Fang, T. H.: Comput. Mater. Sci. 34, 314(2005).Google Scholar
14 Kang, J. H. Kim, K. S. and Kim, K. W.: Tribol. Lett. 25, 93(2007).Google Scholar
15 Tada, K. Yasuda, M. Kimoto, Y. Kawata, H. and Hirai, Y.: Jpn. J. Appl. Phys. 47, 2320(2008).Google Scholar
16 Delaye, J. M. Louis-Achille, V., and Ghaleb, D.: J. Non-Cryst. Solids. 210, 232(1997).Google Scholar
17 Takada, A. Richet, P. C. Catlow, R. A. and Price, G. D.: J. Non-Cryst. Solids. 345-346, 224(2004).Google Scholar
18 Jeng, Y. R. Tsai, P. C. and Fang, T. H.: Tribol. Lett. 18, 315(2005).Google Scholar
19 Ping, Y. Bo, L. N. Daoguo, Y. and Ernst, L. J.: Microsyst. Technol. 12, 1125(2006).Google Scholar
20 Zhang, L. C. and Mylvaganam, K.: J. Comput. Theor. Nanosci. 3, 167(2006).Google Scholar
21 Fang, T. H. Weng, C. I. and Chang, J. G.: Mater. Sci. Eng. A 357, 7(2003).Google Scholar
22 Lin, Y. H. Chen, T. C. Yang, P. F. Jian, S. R. and Lai, Y. S.: Appl. Surf. Sci. 254, 1415(2007).Google Scholar