Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:13:25.807Z Has data issue: false hasContentIssue false

Molecular Dynamics simulations of displacement cascades: role of the interatomic potentials and of the potential hardening

Published online by Cambridge University Press:  21 March 2011

C.S. Becquart
Affiliation:
Laboratoire de Métallurgie Physique et Génie des Matériaux, UMR 8517, Université de Lille I, 59655 Villeneuve d'Ascq Cédex, France
C. Domain
Affiliation:
EDF – R&D Département EMA, Les renardières, F-77818 Moret sur Loing Cédex, France
A. Legris
Affiliation:
Laboratoire de Métallurgie Physique et Génie des Matériaux, UMR 8517, Université de Lille I, 59655 Villeneuve d'Ascq Cédex, France
J.C. van Duysen
Affiliation:
EDF – R&D Département EMA, Les renardières, F-77818 Moret sur Loing Cédex, France
Get access

Abstract

The role of the interatomic potentials on the primary damage has been investigated by Molecular Dynamics (MD) simulations of displacement cascades with three different interatomic potentials dedicated to α-Fe. The primary damage, caused by the neutron interaction with the matter, has been found to be potential sensitive. We have investigated the equilibrium parts of the potential as well as the “short distance interactions” which appear to have a strong influence on the cascade morphology and defects distribution at the end of the cascade. The static properties as well as dynamical (thermal) characteristics of the potentials have been considered; the kinetic and potential energy transfers during the collisions have also been studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Becquart, C.S., Domain, C., Legris, A. and Duysen, J.C. Van; J. Nucl. Mat., 280, 73 (2000).Google Scholar
2. Becquart, C.S., Decker, K.M., Domain, C., Ruste, J., Souffez, Y., Turbatte, J.C. and Duysen, J.C. Van, Proceedings of the 3rd International Conference on Computer Simulation of Radiation Effects in Solids (COSIRES 1996), Radiation Effects and Defects in Solids, 142, 9 (1997).Google Scholar
3. Harrison, R.J., Voter, A.F. and Chen, S.P., “Embedded Atom Potential for BCC Iron”, Atomistic simulation of Materials- Beyond Pair Potentials, Vitek, V. and Srolovitz, D.J. (editors), 219, Plenum New York (1989)Google Scholar
4. Haftel, M.I., Andreadis, T.D., Lill, J.V. and Heridon, J.M., Phys. Rev. B 42, 11540 (1990).Google Scholar
5. Simonelli, G., Pasianot, R. and Savino, E.J., Mat. Res. Soc. Symp. Proc. 291, 567 (1993).Google Scholar
6. Rayne, J.A. and Chandrasekhar, B.S., Phys. Rev. B 122, 1714 (1961).Google Scholar
7. Schepper, L.D., Segers, D., Dorikens-Vanpraet, L., Dorikens, M., Knuyt, G., Stals, L.M. and Moser, P., Phys. Rev. B 27, 5257 (1983)Google Scholar
8. Lindemann, F.A., Physik. Z. 11, 609 (1910).Google Scholar
9. Haworth, C.W., Phil. Mag. 5 (1960) 1229; P. Debrunner and R.J. Morisson, Rev. Mod. Phys. 36, 463 (1964).Google Scholar
10. Maury, F., Biget, M., Vajda, P., Lucasson, A. and Lucasson, P., Phys. Rev. B 14, 5303 (1976).Google Scholar
11. Robinson, M.T.; Phys Rev. B 40, 10717 (1989), ibid. Rad. Effects 141, 1 (1997).Google Scholar
12. Becquart, C.S, Hou, M. and Souidi, A., this conference.Google Scholar
13. Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J., Phys. Rev. B, 29, 2963 (1984).Google Scholar