Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T02:29:02.499Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations and Experimental Evidence for Deep Penetration by Channeled Ions During Low-Energy Ion Bombardment of III-V Semiconductors

Published online by Cambridge University Press:  25 February 2011

N.G. Stoffel
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
S.A. Schwarz
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
M.A.A. Pudensi
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
K. Kash
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
L.T. Florez
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
J.P. Harbison
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
B.J. Wilkens
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
Get access

Abstract

Molecular dynamics simulations are used to investigate the formation of deep crystalline damage during the low-energy ion bombardment of semiconductor crystals. The trajectories of primary ions are calculated as they propagated through a model crystal lattice. Energy losses by nuclear recoil and and by electronic excitation are included. For beams of heavy ions at energies below 1 keV, the average penetration range of the simulated trajectories is only a few nanometers. However, a small, but, significant fraction of the ions are found to scatter into <011= axial channels through which they propagate tens of nm below the surface. This effect is used to explain high-resolution secondary ion mass spectrometry and photoluminescence data which reveal deep ion penetration and optical damage on the same length scale. Our results suggest that unintentional ion channeling is a major factor in the extensive degradation of optical and electrical properties of semiconductor surfaces which are exposed to low energy ion bombardment during device fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gaag, B. P. Van der and Scherer, A., Appl. Phys. Lett. 56, 481 (1990).Google Scholar
2. Wong, H. F., Green, D. L., Liu, T. Y., Lishan, D. G., Bellis, M., Hu, E. L., Petroff, P. M., Holtz, P. O. and Merz, J. L., J. Vac. Sci. Technol. B 6, 1906 (1988).Google Scholar
3. Germann, R., Forchel, A., Bresch, M. and Meier, H. P., J. Vac. Sci. Technol. B 7, 1475 (1989).Google Scholar
4. Joseph, M., Guimaraes, F. E. G., Kraus, J. and Tegude, F. J., J. Vac. Sci. Technol. B 9, 1456 (1991).Google Scholar
5. As, D. J., Frey, T., Jantz, W., Kaufel, G., Köhler, K., Rothemund, W., Schweizer, T. and Zappe, H. P., J. Electr. Mat. 19, 747 (1990).Google Scholar
6. Swaminathan, V., Asom, M. T., Chakrabarti, U. K. and Pearton, S. J., Appl. Phys. Lett. 58, 1256 (1991).Google Scholar
7. Andersen, J. U. and Feldman, L. C., Phys. Rev. B 1, 2063 (1970).Google Scholar
8. Barret, J. H., Phys. Rev. 166, 219 (1968).Google Scholar
9. Stoffel, N. G., accepted for publication in J. Vac. Sci. Technol.Google Scholar
10. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
11. Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. & Meth. 174, 289 (1980).Google Scholar
12. Firsov, O. B., Soviet Phys. JETP 36, 1076 (1959).Google Scholar
13. Wilson, R. G., IEEE Electron Dev. Lett. 3, 210 (1982).Google Scholar
14. Hegarty, J. and Sturge, M. D., J. Opt. Soc. Am. B 2, 1143 (1985).Google Scholar
15. Stoffel, N. G., Schwarz, S. A., Pudensi, M. A. A., Kash, K., Florez, L. T. and Harbison, J. P., submitted to Appl. Phys. Lett.Google Scholar
16. Burenkov, A. F., Komarov, F. F., Kumakhov, M. A. and Temkin, M. M.. in Tables of Ion Implantation Spatial Distributions, 371 (Gordon and Breach, New York, 1986).Google Scholar
17. Schwarz, S. A., Palmstrom, C. J., Schwartz, C. L., Sands, T., Shantharama, L. G., Harbison, J. P. and Florez, L. T., J. Vac. Sci. Technol. A 8, 2079 (1990).Google Scholar