Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T00:57:27.703Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxial Growth of Nonpolar a-plane InN/ GaN Heterostructures

Published online by Cambridge University Press:  21 February 2012

Mohana K. Rajpalke
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA
Thirumaleshwara N. Bhat
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA
Basanta Roul
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA Central Research Laboratory, Bharat Electronics, Bangalore-560013, INDIA
Mahesh Kumar
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA Central Research Laboratory, Bharat Electronics, Bangalore-560013, INDIA
S. B. Krupanidhi*
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA
Get access

Abstract

Nonpolar a-plane InN/GaN heterostructures were grown by plasma assisted molecular beam epitaxy. The growth of nonpolar a- plane InN / GaN heterostructures were confirmed by high resolution x-ray diffraction study. Reflection high energy electron diffraction patterns show the reasonably smooth surface of a-plane GaN and island-like growth for nonpolar a-plane InN film, which is further confirmed by scanning electron micrographs. An absorption edge in the optical spectra has the energy of 0.74 eV, showing blueshifts from the fundamental band gap of 0.7 eV. The rectifying behavior of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. The Schottky barrier height (φb) and the ideality factor (η) for the InN/GaN heterostructures found to be 0.58 eV and 2.05 respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ponce, F.A. and Bour, D.P.Nitride-based semiconductors for blue and green light-emitting devicesNature 386, 351 (1997)Google Scholar
[2] Simeonov, D., Feltin, E., Buhlmann, H.-J., Zhu, T., Castiglia, A., Mosca, M., Carlin, J.-F., Butté, R., and Grandjean, N.Blue lasing at room temperature in high quality factor GaN/AlInN micro disks with InGaN quantum wellsAppl. Phys. Lett. 90, 061106 (2007).Google Scholar
[3] Bernardini, F., Fiorentini, V., Vanderbilt, D., Phys. Rev. B. 56, 10024 (1997)Google Scholar
[4] Traetta, G., Passaseo, A., Longo, M., Cannoletta, D., Cingolani, R., Lomascolo, M., Bonfiglio, A., Di Carlo, A., Della Sala, F., Lugli, P., Botchkarev, A., Morkoç, H., Physica, E: Low –dimensional systems and nanostructures 7 ,929 (2000).Google Scholar
[5] Lu, Hai, Schaff, William J., Eastman, Lester F., Wu, J., Walukiewicz, Wladek, Cimalla, Volker, and Ambacher, OliverGrowth of a-plane InN on r-plane sapphire with a GaN buffer by molecular-beam epitaxyAppl. Phys. Lett. 83, 1136 (2003)Google Scholar
[6] Kumagai, Y., Tsuyuguchi, A., Naoi, H., Araki, T., Na, H., and Nanishi, Y.A-plane (1120) InN growth on nitridated R-plane sapphire by ECR-MBEphys. stat. sol. (b) 243, 14681471 (2006)Google Scholar
[7] Chen, N. C., Chang, P. H., Wang, Y. N., Peng, H. C., Lien, W. C., Shih, C. F., Chang, Chin-An, and Wu, G. M.Schottky behavior at InN–GaN interfaceAppl. Phys. Lett. 87, 212111 (2005)Google Scholar
[8] Ghosh, A. and Choudhary, R.N.P.Phonon assisted photoluminescence and surface optical mode of Zn embedded ZnO nanostructureJ. Phy. D. Appl. Phys. 42 , 075416(2009)Google Scholar
[9] Wu, J., Walukiewicz, W., Shan, W., Yu, K.M., Ager, J.W. III, Haller, E.E., lu, H. and Schaff, W.J., “Effects of the narrow band gap on the properties of InNPhys. Rev. B. 66, 201403(2002)Google Scholar
[10] Wang, L., Nathan, M. I., Lim, T., Khan, M. A., and Chen, Q.High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaNAppl. Phys. Lett. 68, 1267 (1996).Google Scholar
[11] Yu, L. S., Liu, Q. Z., Xing, Q. J., Qiao, D. J., Lau, S. S., and Redwing, J.The role of the tunneling component in the current–voltage characteristics of metal-GaN Schottky diodesJ. Appl. Phys. 84, 2099 (1998)Google Scholar
[12] Jang, Ja-Soon, Kim, Donghwan, and Seong, Tae-YeonSchottky barrier characteristics of Pt contacts to n-type InGaNJ. Appl. Phys. 99, 073704 (2006).Google Scholar