Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T18:52:33.033Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxial Growth of Cdl-xznxTe Matched to HgCdTe Alloys

Published online by Cambridge University Press:  25 February 2011

N. Magnea
Affiliation:
Centre d'Etudes Nucléaires de Grenoble. 85 X -38041 Grenoble Cédex. France Département de Recherche Fondamentale
F. Dal'bo
Affiliation:
Centre d'Etudes Nucléaires de Grenoble. 85 X -38041 Grenoble Cédex. France Département de Recherche Fondamentale
J. L. Pautrat
Affiliation:
Centre d'Etudes Nucléaires de Grenoble. 85 X -38041 Grenoble Cédex. France Département de Recherche Fondamentale
A. Million
Affiliation:
Centre d'Etudes Nucléaires de Grenoble. 85 X -38041 Grenoble Cédex. France Laboratoire d'Electronique et ce Technologie de l'informatique
L. Di Cioccio
Affiliation:
Centre d'Etudes Nucléaires de Grenoble. 85 X -38041 Grenoble Cédex. France Laboratoire d'Electronique et ce Technologie de l'informatique
G. Feuillet
Affiliation:
Centre d'Etudes Nucléaires de Grenoble. 85 X -38041 Grenoble Cédex. France Département de Recherche Fondamentale
Get access

Abstract

CD1−xZnxTe alloys of various composition have been grown by the Molecular Beam Epitaxy Technique and characterized by Transmission Electron Microscopy. C(V) measurements and photoluminescence spectroscopy techniques. The quality of the thick layers is comparable to that of bulk material. Thin strained layers have also been grown whose interfaces are structurally good. The recombination within a CdTe well confined between Cd1−xZnxTe barriers is dominated by intrinsic processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Faurie, J. P., Million, A.. Bock, R. and Tissot, J. L.. J. Vac. Scd. and Technol. A. 1 1593(1983).CrossRefGoogle Scholar
Pautrat, J. L., Francou, J. M., Magnea, N., Molva, E. and Saminadayar, K. J. Cryst. Growth, 72. 194 (1985).Google Scholar
Francou, J. M., Saminadayar, K., Pautrat, J. L., Gaillard, J. P., Millon, A. and Fontaine, C., J. Crystal Growth, 72., 220 (1985).Google Scholar
[4] Milchberg, G., Saminadayar, K., Molva, E. and Zelsmann, H. R., J. Phys. Chem. Solids. 46, 423 (1985).Google Scholar
[5] Marple, D.T.F., Phys. Rey. 129, 2466 (1963).Google Scholar
[6] Feng, Z. C., Mascarenhas, A.. Choyke, W. J., J. of Luminescence, 35. 329 (1986)Google Scholar
[7] Fontaine, C.. thesis Grenoble (1986).Google Scholar
[8] Magnea, N., Dal'bo, F.. Fontaine, C.. Million, A., Gailliard, J. P., Dang, Le Si, d'Aubigne, Y. Merle, Tatarenko, S.. Cryst, J.. Growth (1986) to be published.Google Scholar
[9] Nelson, R.J. and Sobers, R.G., J. Appl. Phys. 49, 6103 (1978)CrossRefGoogle Scholar
[10] Gross, E.. Permogorov, S.. Razbirin, B., Soviet. Phys. Uspekhi 14, 104 (1971)Google Scholar
[11] Masselink, W.T., Sun, Y.L., Fisher, R.. Drummond, T.J., Chang, Y.C., Klein, M.V. and Morkoc, H.K.. J. Vac. Sci. Technol. B 2. 117 (1984)CrossRefGoogle Scholar