Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T18:47:20.014Z Has data issue: false hasContentIssue false

A Modified Chemical Route for Synthesis of Zirconia Thin Films Having Tunable Porosity

Published online by Cambridge University Press:  01 February 2011

Manish Kumar
Affiliation:
[email protected], Indian Institute of Technology Delhi, Physics, MS-401, Thin Film Laboratory,, Dept. of Physics,, Indian Institute Of Technology Delhi, Hauz Khas, New Delhi, 110016, India, +91-11-2659-6521
G. B. Reddy
Affiliation:
[email protected], Thin Film Laboratory, Department of Physics,, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
Get access

Abstract

A new chemical synthesis route is reported for deposition of zirconia thin films having adjustable porosity with average pore size in nanometer range. Deposition method is simply a sol-gel dip coating in which HCl is used as catalyst. TEM and FTIR studies of deposited films show porous microstructure, which depends critically on ageing of sol used. The shift in binding energy of Zr 3d5/2 (at 182.4 eV) attributes the formation of zirconia. Optical results show high transmittance (> 80%) in VIS-NIR region and effective refractive indices values (neff) tend to decrease for films prepared with higher aged sol. Porosity enhancement from 15-52% is observed by neff comparing with refractive index of non porous films (nz).

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, D. D. Snow, L. A. Sibille, L. Ignont, E. J. of Non-Crystalline Solids 285 (2001) 256263 Google Scholar
2. Clarke, D. R. and Phillpot, S. R. Materialstoday, (2005) 2229 Google Scholar
3. Wu, J. C. Cheng, L. J. of Membrane Science 167(2000) 253261 Google Scholar
4. Ibáòez, R. López, Martin, F. Ramos-Barrado, J. R., Leinen, D. Surface & Coatings Technology 200 (2006) 63686372 Google Scholar
5. Spirig, J. V. Ramamoorthy, R. Akbar, S. A. Routbort, J. L. Singh, D. Dutta, P.K., Sensors and Actuators B 124 (2007) 192201 Google Scholar
6. Sayan, S. Nguyen, N. V. Ehrstein, J. Emgo, T. Zhao, Xinyuan, Vanderbilt, David, Levin, I. Gusev, E. P. Kim, Hyoungsub and Mclntyre, P. J. Appl. Phys. Lett., 86 (2005) 152902 Google Scholar
7. Amor, S. B. Rogier, B. Baud, G. Jacquet, M. Nardin, M. Materials Science and Engineering B57 (1998) 2839 Google Scholar
8. Soyez, G. Eastman, J. A. Thompson, L. J. Bai, G.-R. Baldo, P. M. McCormick, A. W. DiMelfi, R. J. Elmustafa, A. A. Tambwe, M. F. and Stone, D. S. Appl. Phys. Lett. 77 (2000) 1155 Google Scholar
9. Ehrhart, G. Capoen, B. Robbe, O. Boy, Ph., Turrell, S. and Bouazaoui, M. 496 Thin Solid Films (2005) 227233 Google Scholar
10. Sian, T. S. Reddy, G. B. Chem. Phys. Lett. 418 (2006) 170173 Google Scholar
11. Khwaja, E. E. and Tomlin, S. G., Thin Solid Films 30, (1975) 361369 Google Scholar
12. Taylor, D. J. Fleig, P. F. Hietala, S. L. Thin Solid Films 332 (1998) 257261 Google Scholar