Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T20:46:25.408Z Has data issue: false hasContentIssue false

Modification of InN Properties by Interactions with Hydrogen and Nitrogen

Published online by Cambridge University Press:  01 February 2011

Maria Losurdo
Affiliation:
[email protected], IMIP-CNR, PLASMACHEMISTRY, VIA ORABONA 4, BARI, BARI, 70125, Italy, +39.0805443562, +39.0805442024
Maria Michela Giangregorio
Affiliation:
Giovanni Bruno
Affiliation:
[email protected], IMIP-CNR, PLASMACHEMISTRY, Italy
Tong-Ho Kim
Affiliation:
[email protected], Duke University, Electrical and Comp Engin, United States
Pae Wu
Affiliation:
[email protected], Duke University, Electrical and Comp Engin, United States
Soojeong Choi
Affiliation:
[email protected], Duke University, Electrical and Comp Engin, United States
Mike Morse
Affiliation:
[email protected], Duke University, Electrical and Comp Engin, United States
April Brown
Affiliation:
[email protected], Duke University, Electrical and Comp Engin, United States
Francesco Masia
Affiliation:
[email protected], Universita La Sapienza, Physics, Italy
Antonio Polimeni
Affiliation:
[email protected], Universita La Sapienza, Physics, Italy
Mario Capizzi
Affiliation:
[email protected], Universita La Sapienza, Physics, Italy
Get access

Abstract

The interaction of InN epitaxial films grown by r.f. plasma assisted molecular beam epitaxy with atomic hydrogen and nitrogen, produced by remote r.f. H2 and N2 plasmas, is investigated. InN strongly reacts with both atomic hydrogen and nitrogen yielding depletion of nitrogen and concurrent formation of In clusters. The impact of hydrogen treatments on the optical properties of InN is assessed using photoluminescence (PL). It is found that hydrogen suppresses the intense PL band peaked at approximately 0.7eV for the as-grown InN epitaxial layers, and results in the appearance of a new PL band whose peak energy and intensity increase with H-dose. The effect of exposure to atomic hydrogen and nitrogen on electrical properties of InN is investigated using Hall effect measurements. Atomic force microscopy is also used for studying the morphological changes of InN upon interaction with atomic hydrogen and nitrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).CrossRefGoogle Scholar
2. Wu, J., Walukiewicz, W., Li, S.X., Armitage, R., Ho, J.C., Weber, E.R., Haller, E.E., Lu, H., Schaff, W.J., Barcz, A., Jakiela, R., Appl. Phys. Lett. 84, 2805 (2004).CrossRefGoogle Scholar
3. Limpijumnong, S., Van de Walle, C.G., Phys. Stat. Sol. 228, 303 (2001).3.0.CO;2-A>CrossRef3.0.CO;2-A>Google Scholar
4. Stampfl, C., Van de Walle, C.G., Vogel, D., Kruger, P., Pollmann, J., Phys. Rev. B 61, R7846, (2000).CrossRefGoogle Scholar
5. Wu, J., Walukiewicz, W., Superlattices Microstruct. 34, 63 (2003).CrossRefGoogle Scholar
6. Brown, A.S., Kim, T.H., Choi, S., Wu, P., Morse, M., Losurdo, M., Giangregorio, M.M., Bruno, G., Moto, A., Phys. Stat. Sol. (2006) ), Proc. of Int. Conf. Nitr. Sem. ICNS6, Bremen, Germany Google Scholar
7. Losurdo, M., Giangregorio, M.M., Capezzuto, P., Bruno, G., Namkoong, G., Doolittle, W.A., Brown, A.S., J. Appl. Phys. 95, 8408 (2004).CrossRefGoogle Scholar
8. Losurdo, M., Capezzuto, P., Bruno, G., Irene, E.A., Phys. Rev. B 58, 15878 (1998).CrossRefGoogle Scholar
9. Losurdo, M., Bruno, G., Kim, T.H., Choi, S., Brown, A.S., Appl. Phys. Lett. (2006).Google Scholar
10. Kasic, A., Valcheva, E., Monemar, B., Lu, H., Shaff, W.J., Phys. Rev. B 70, 115217 (2004).CrossRefGoogle Scholar
11. Drago, M., Schmidtling, T., Pohl, U.W., Peters, S., Richter, W., Phys. Stat. Sol. (c) 0, 2842 (2003).CrossRefGoogle Scholar
12. Gries, W.H., Surf. Interf. Analysis, 24, 38 (1996).3.0.CO;2-H>CrossRef3.0.CO;2-H>Google Scholar
13. Hong, J.W., Park, S., Khim, Z.G., Rev. Sci. Instr. 70, 1735 (1999).CrossRefGoogle Scholar
14. Losurdo, M., Giangregorio, M., Capezzuto, P., Bruno, G., Namkoong, G., Doolittle, W.A., Brown, A., J. Appl. Phys. 95, 8408 (2004).CrossRefGoogle Scholar
15. Sato, M., Jpn. J. Appl. Phys. 36, L658 (1997).CrossRefGoogle Scholar
16. Jenkins, D.W., Dow, J.D., Phys. Rev. B 39, 3317 (1989).Google Scholar