Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T01:45:04.464Z Has data issue: false hasContentIssue false

Modeling of Thermal Conductivity of Polycrystalline GaN Films

Published online by Cambridge University Press:  01 February 2011

D. Kotchetkov
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering, University of California- Riverside, Riverside, CA 92521 U.S.A.
A. A. Balandin
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering, University of California- Riverside, Riverside, CA 92521 U.S.A.
Get access

Abstract

We present preliminary results of a theoretical investigation of the thermal conductivity of polycrystalline GaN films. It is assumed that grain boundaries play a major role in limiting the thermal conductivity, which is calculated using the phonon-hopping transport approach. The effect of the grain size, size dispersion, and inter-grain interface structure on the thermal conductivity values is analyzed. The obtained results are compared with available experimental data for polycrystalline films and model predictions for crystalline GaN films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kotchetkov, D., Zou, J., Balandin, A. A., Florescu, D. I., and Pollak, Fred. H., Appl. Phys. Lett. 79, 4316 (2001).Google Scholar
2. Zou, J., Kotchetkov, D., Balandin, A. A., Florescu, D. I., and Pollak, Fred. H., J. Appl. Phys. 92, 2534 (2002).Google Scholar
3. Klemens, P. G., in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic, New York, 1958), Vol. 7.Google Scholar
4. Braginsky, L., Lukzen, N., Shklover, V., and Hofmann, H., Phys. Rev. B 66, 134203 (2002).Google Scholar
5. Daly, B. C., Maris, H. J., Nurmikko, A. V., Kuball, M., and Han, J., J. Appl. Phys. 92, 3820 (2002).Google Scholar
6. Nakamura, S., Pearton, S., and Fasol, G., in The Blue Laser Diode: The Complete Story (Springer, Berlin, 2000)Google Scholar
7. Bougrov, V., Levinstein, M. E., Rumyantsev, S. L., and Zubrilov, A., in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by Levinstein, M. E., Rumyantsev, S. L., Shur, M. S. (Wiley, New York, 2001).Google Scholar
8. Porowski, S., Mater. Sci. Eng. B 44 (1997).Google Scholar
9. Zou, J., Kotchetkov, D., Balandin, A.A., Florescu, D.I. and Pollak, F.H., “The effect of defects and dopants on thermal conduction in GaN films,” Proceedings of the Materials Research Society, San Francisco, California, March 2002, (MRS Proceedings Volume 719) edited by Ashok, S., Chevallier, J., et a., pp. F8.259.Google Scholar
10. Kotchetkov, D., Zou, J. and Balandin, A.A., “Theoretical investigation of thermal conductivity in wurtzite GaN,” Proceedings of the Materials Research Society, San Francisco, California, March 2002, (MRS Proceedings Volume 731) edited by Tikare, V., Olevsky, E.A., Zavaliangos, A., pp. W5.11.Google Scholar