Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:34:12.330Z Has data issue: false hasContentIssue false

Modeling of the Surface Annihilation of Excess Self-Interstitials Generated by Gold Diffusion into Silicon

Published online by Cambridge University Press:  10 February 2011

N. A. Stolwijk
Affiliation:
Institut für Metallforschung, Universität Münster, D-48149 Münster, Germany, [email protected]
W. Lerch
Affiliation:
Institut für Metallforschung, Universität Münster, D-48149 Münster, Germany, [email protected] STEAG AST Elektronik GmbH, Daimlerstrasse 10, D-89160 Dornstadt, Germany
A. Giese
Affiliation:
Institut für Metallforschung, Universität Münster, D-48149 Münster, Germany, [email protected]
Get access

Abstract

Based on the kick-out mechanism, we have modeled the time evolution of the Si self-interstitial supersaturation during gold diffusion from evaporated surface layers into silicon substrates. The model comprises a limited annihilation velocity υI of self-interstitials at the Si surface, which accounts for the gradual increase of the Au boundary concentration observed during rapid thermal annealing at higher temperatures and furnace annealing at lower temperatures. Experimental data were fitted by computer simulation of the Au diffusion process. An approximate analytical expression describing the increase of the Au boundary concentration with time is also given. We obtain υI 1.35 × 1011 exp(−3.91 eV/kBT) ms-1 for gold-covered {100}-oriented Si surfaces between 845 °C and 1119 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gösele, U., Frank, W., and Seeger, A., Appl. Phys. A23, 361 (1980)Google Scholar
2. Stolwijk, N. A., Schuster, B., and Hölzl, J., Appl. Phys. A33, 133 (1984)Google Scholar
3. Stolwijk, N. A., Hölzl, J., Frank, W., Weber, E.R., and Mehrer, H., Appl. Phys. A39, 37 (1986)Google Scholar
4. Bracht, H., Stolwijk, N. A., and Mehrer, H., Phys. Rev. B52, 16542 (1995)Google Scholar
5. Zimmermann, H., Ryssel, H., Appl. Phys. A55, 121 (1992)Google Scholar
6. Lerch, W. and Stolwijk, N. A., J. Appl. Phys., in pressGoogle Scholar
7. Hill, M., Lietz, M., and Sittig, R., J. Electrochem. Soc. 129, 1579 (1982)Google Scholar
8. Jüngling, W., Pichler, P., Selberherr, S., Guerrero, E., and Pötzl, H. W., IEEE Trans. Electron. Devices 32, 156 (1985)Google Scholar
9. Stolwijk, N. A., Giese, A., and Lerch, W. (unpublished)Google Scholar
10. Seeger, A., Phys. Stat. Sol. (a) 61, 521 (1980)Google Scholar
11. Lerch, W., Stolwijk, N. A., and Mehrer, H., Meas. Sci. Technol. 5, 835 (1994)Google Scholar
12. Ouwerling, G.J.L., van Rijs, F., Jansen, B.F.P., and Crans, W., Proc. NASECODE VI, 78 (1989)Google Scholar
13. Rogers, W.B. and Massoud, H.Z., J. Electrochem. Soc. 138, 3492 (1991)Google Scholar