Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T19:22:57.221Z Has data issue: false hasContentIssue false

Modeling of Nanoimprinting of Metals by Nanotube Arrays

Published online by Cambridge University Press:  01 February 2011

Lili Li
Affiliation:
[email protected], University of Akron, Department of Mechanical Engineering, Akron, Ohio, United States
Zhenhai Xia
Affiliation:
[email protected], The University of Akron, Department of Mechancial Engineering, Akron, United States
Yanqing Yang
Affiliation:
[email protected], Northwestern Polytechnic University, Xi'an, Shannxi, China
Get access

Abstract

Molecular dynamics (MD) simulations are reported for buckling and interfacial friction of single- and multi-wall carbon nanotubes (CNT) with interwall sp3 bonds imprinted on copper substrates. A small perturbation of mechanical vibration is applied to the systems in the nanoimprinting. The imprinting capabilities of multi-wall CNTs are much better than single-wall CNTs. While the single-wall CNT is insensitive to the vibration, the indentation force and buckling of multi-wall CNTs with interwall sp3 bonding is dependent on the amplitude of the perturbation, providing a way to controlling the interfacial friction. There is an optimal amplitude, at which the buckling and friction force of the CNTs are minimized in nanoimprinting.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lister, K. A., Thoms, S., Macintyre, D.S., Wilkinson, C.D.W., Weaver, J. M. and Casey, B. G., J. Vac. Sci. Technol. B 22, 3257(2004).Google Scholar
2. Nishio, K., Yasui, K., Matsumoto, F., Kanezawa, K. and Masuda, H., Adv. Mater. 17 1293(2005).Google Scholar
3. Chen, H.L., Chuang, S.Y., Cheng, H.C., Lin, C.H. and Chu, T.C., Microelectron. Eng. 83, 893(2006).Google Scholar
4. Guo., L Jay J. Phys. D: Appl. Phys. 37, 123141(2004).Google Scholar
5. Cross, Graham L W. J. Phys. D: Appl. Phys. 39, 363386(2006).Google Scholar
6. Hirai, Y., Konishi, T., Yoshikawa, T. and Yoshida, S., J. Vac. Sci. Technol. B 22 (2004) 3288 Google Scholar
7. Hirai, Y., Yoshida, S. and Takagi, N., J. Vac. Sci. Technol. B, 21, 2765(2003).Google Scholar
8. Young, W.B., Microelectronic. Eng. 77, 405(2005).Google Scholar
9. Pei, Q. X., Lu, C., Liu, Z.S. and Lam, K Y, J. Phys. D: Appl. Phys. 40, 49284935(2007).Google Scholar
10. Kang, J., Kim, K.S. and Kim, K.W., Tribology Letters, 25, 93102 (2007).Google Scholar
11. Hirai, Y., Yoshida, S., Takagi, N., Tanaka, Y., Yabe, H., Sasaki, K., Sumitani, H. and Yamamoto, K., Jpn. J. Appl. Phys. 42, 3863(2003).Google Scholar
12. Hirai, Y., Konishi, T., Yoshikawa, T. and Yoshida., S. J. Vac. Sci. Technol. B 22 (2004) 3288.Google Scholar
13. McCarthy, B., Coleman, J.N., Czerw, R., Dalton, A.B., in het Panhuis, M. and Maiti, A. et al., J. Phys. Chem. B 106, 22102216(2002).Google Scholar
14. Xia, Z. H., Guduru, P. and Curtin, W. A., Physical Review Letters, 98, 245501 (2007).Google Scholar
15. Brenner, D. W., Shenderava, O. A., Harrison, J. A et al. J. Phys.: Condens. Matter 14, 783802(2002).Google Scholar
16. Brenner, D. W.. Phys. Rev. B 42, 94589471(1990).Google Scholar
17. Gómez, Liliana, Dobry. Phys. Rev. B 55, 62656271(1997)Google Scholar
18. Cleri, Fabrizio, Rosato, Vittorio. Phys. Rev. B 48, 2233(1993).Google Scholar
19. Maekawa, K., Itoh, A.. Wear 188, 115122(1995)Google Scholar
20. Komanduri, R., Chandrasekaran, N., Raff, L.M.. Sciences 43, 22372260(2001).Google Scholar
21. Xia, Z. H., and Curtin, W. A., Composites Science and Technology, 67, 15181529 (2007).Google Scholar