Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T00:12:41.519Z Has data issue: false hasContentIssue false

Modeling of Be Diffusion in InGaAs Epitaxial Structures

Published online by Cambridge University Press:  10 February 2011

S. Gautier
Affiliation:
LCIA-INSA de Rouen, Place Emile Blondel, B.P.08, F76131 Mont Saint Aignan, France
S. Koumetz
Affiliation:
LCIA-INSA de Rouen, Place Emile Blondel, B.P.08, F76131 Mont Saint Aignan, France
J. Marcon
Affiliation:
LCIA-INSA de Rouen, Place Emile Blondel, B.P.08, F76131 Mont Saint Aignan, France
K. Ketata
Affiliation:
LCIA-INSA de Rouen, Place Emile Blondel, B.P.08, F76131 Mont Saint Aignan, France
M. Ketata
Affiliation:
LCIA-INSA de Rouen, Place Emile Blondel, B.P.08, F76131 Mont Saint Aignan, France
P. Launay
Affiliation:
CNET de Bagneux, 196 av. H. Ravera, B.P. 107, F92225 Bagneux, France
Get access

Abstract

The subject of this work is the simulation of Be diffusion during post-growth Rapid Thermal Annealing (RTA) of InGaAs epitaxial layers grown by Chemical Beam Epitaxy (CBE). This diffusion may occur during thermal treatments of InGaAs/InP Heterojunction Bipolar Transistors (HBT's), which contributes to limit the frequency performances of these devices. In order to characterize the Be depth profiles, Secondary Ion Mass Spectrometry (SIMS) has been used. The concentration dependent diffusivity has been covered to perform an improved data fitting of Be diffusion profiles. In a first step, the solid state diffusion mechanisms have been developed, including the Substitutional-Interstitial Diffusion (SID) and, in particular, Kick-out mechanism. To explain the observed concentration profiles and related diffusion mechanisms, a Generalized Substitutional-Interstitial Diffusion model is proposed. A simultaneous diffusion by Dissociative and Kick-out mechanisms is suggested. Good agreements between experimental depth profiles and simulated curves have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jourdin, N., Alexandre, F., Dubon-Chevalier, C., Dangla, J., and Gao, Y., IEEE Trans. Electron. Devices 39, p. 767 (1992).Google Scholar
2. Frank, F.C. and Turnbull, D., Phys. Rev. 104, p. 617 (1956).Google Scholar
3. Longini, R.L., Solid State Electron. 5, p. 127 (1962).Google Scholar
4. Gösele, U. and Morehead, F., J. Appl. Phys. 52, p. 4617 (1981).Google Scholar
5. Yu, S., Tan, T.Y. and Gösele, U., J. Appl. Phys. 69, p. 3547 (1991).Google Scholar
6. van Ommen, A.H, J. Appl. Phys. 54, p. 5055 (1983).Google Scholar
7. Scott, E.G., Wake, D., Spiller, G.D.T. and Davies, G J, J. Appl. Phys. 66, p. 5344 (1989).Google Scholar
8. Metzger, R. A., Hafizi, M., Stanchina, W.E., Lin, T., Wilson, R.G. and McGray, L.G., Appl. Phys. Lett. 63, p. 1360(1993).Google Scholar
9. Benchimol, J.L., Juhel, M., Petitjean, M., Ancilotti, A., J. Vac. Sci. Technol B13, p 1 (1995).Google Scholar
10. Ghezzo, M., J. Electrochem. Soc. 119, p. 977 (1972).Google Scholar
11. Koumetz, S., Marcon, J., Ketata, K., Ketata, M., Dubon-Chevalier, C., Launay, P., and Benchimol, J.L., Appl. Phys. Lett. 67, p. 2161 (1995).Google Scholar
12. Koumetz, S., Marcon, J., Ketata, K., Ketata, M., Lefebvre, F., Martin, P., Launay, P., Mater. Sci. and Eng. B37, p. 208 (1996).Google Scholar
13. Ilegems, M., J. Appl. Phys. 48, p. 1278 (1977).Google Scholar
14. Press, W.H., Teucolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical recipes in C. Cambridge University Press, 1992, pp. 847851.Google Scholar
15. Tan, T.Y. and Gösele, U., J. Appl. Phys. 61, p. 1841 (1987).Google Scholar