Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T03:56:24.505Z Has data issue: false hasContentIssue false

Modeling of a GaN Based Static Induction Transistor

Published online by Cambridge University Press:  15 February 2011

Gabriela E. Bunea
Affiliation:
Dept. of Physics, Boston University, Boston, MA, 02215, [email protected]
S.T. Dunham
Affiliation:
Dept. of Electrical and Computer Engineering, Boston University, Boston, MA, 02215
T.D. Moustakas
Affiliation:
Dept. of Electrical and Computer Engineering, Boston University, Boston, MA, 02215
Get access

Abstract

Static induction transistors (SITs) are short channel FET structures which are suitable for high power, high frequency and high temperature applications. GaN has particularly favorable properties for SIT operation. However, such a device has not yet been fabricated. In this paper we report simulation studies on GaN static induction transistors over a range of device structures and operating conditions. The transistor was modeled with coupled drift-diffusion and heat-flow equations. We found that the performance of the device depends sensitively on the thermal boundary conditions, as self-heating effects limit the maximum voltage swing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Shur, M.S., Khan, M.A., Mat. Res. Bull. 22 (2), 44 (1997).Google Scholar
[2] Khan, M.A., Chen, Q., Shur, M., Dermott, B., Higgins, J., Burm, J., Schaff, W., Eastman, L., Solid State Electron. 41, 1555 (1997).Google Scholar
[3] Siergiej, R.R., Clarke, R.C., IEDM-95, 353 (1995).Google Scholar
[4] Moore, K., Trew, R.J., MRS Bulletin, March, 50 (1997).Google Scholar
[5] Binari, S., The 2nd Int. Conf. On I1I-V Nitrides, Tokushima, Japan (1997).Google Scholar
[6] Trew, R.J., Shin, M., Gatto, W., Solid State Electron. 41, 1561 (1997).Google Scholar
[7] Wu, Y.F., Keller, B., Keller, S., Kapolnek, D., Kozodoy, P., Denbaars, S., Mishra, U., Solid State Electron. 41, 1569 (1997).Google Scholar
[8] Burm, J., Schaff, W., Martin, G., Eastman, L., Amano, H., Akasaki, I., Solid State Electron. 41, 247 (1997).Google Scholar
[9] Wu, Y.F., Keller, B., Keller, S., Fini, P., Pusl, J., Le, M., Nguyen, N., Nguyen, C., Widman, D., Keller, S., Denbaars, S., Mishra, U., Electron. Lett. 33, 1742 (1997).Google Scholar
[10] Khan, M.A., Chen, Q., Shur, M., Dermott, B., Higgins, J., Burm, J., Schaff, W., Eastman, L., IEEE Electron Device Lett. 17, 584 (1996).Google Scholar
[11] Wu, Y.F., Keller, B., Keller, S., Nguyen, N., IEEE Electron Device Lett. 18, 438 (1997).Google Scholar
[12] Atlas User's Manual (Device simulation software), Silvaco Inc., Version 1.5.0. (1997).Google Scholar
[13] Anderson, H., Physics Vade Mecum (AIP, 1981).Google Scholar
[14] Sichel, E.K., Pankove, J.I., J. Phys. Chem. Solids 38, 330 (1978).Google Scholar
[15] Dmitriev, A.V., Oruzheinikov, A.L., MRS Internet J. Nitride Semic. Res. 1, 46 (1996).Google Scholar
[16] Albrech, J.D., MRS Nitride Symp. Proc., 423 (1996).Google Scholar
[17] Shur, M., J. Electron. Mat. 25, 777 (1996).Google Scholar
[18] Bhapkar, U., Shur, M.S., J. Appl. Phys. 82 (4), 1649 (1997).Google Scholar
[19] Götz, W., Johnson, N.M., Chen, C., Liu, H., Kuo, C., Imler, W., Appl. Phys. Lett. 68 (22), 3144 (1996).Google Scholar
[20] Nakamura, S., Mukai, T., Senoh, M., Jpn. J. of Appl. Phys. 31, 2883 (1997).Google Scholar
[21] Weimann, N., Eastman, L., Doppalapudi, D., Ng, H., Moustakas, T.D., J. Appl. Phys. 83, 3656 (1998).Google Scholar
[22] Selberherr, S., Analysis and simulation of semiconductor devices (Wien-New York, 1984).Google Scholar
[23] Oguzman, I.H., Bellotti, E., Brennan, K., Kolnik, J., Wang, R., Ruden, P., J. Appl. Phys. 81 (12), 7827 (1997).Google Scholar
[24] Hahne, E., Grigull, U., Int. J. Heat Mass Transfer 18, 751 (1975).Google Scholar