Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:26:28.434Z Has data issue: false hasContentIssue false

Modeling and Experimental Study of SiH4/GeH4/H2 Gas Discharge for Hydrogenated Silicon Germanium Deposition by RF PECVD

Published online by Cambridge University Press:  10 May 2012

Lai Zhao
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, 140, Evans Hall, Newark, DE, 19716, U.S.A.
Robert Hunsperger
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, 140, Evans Hall, Newark, DE, 19716, U.S.A.
Steven Hegedus
Affiliation:
Institute of Energy Conversion, 451 Wyoming Road, Newark, DE 19716, U.S.A
Get access

Abstract

A one-dimensional model has been developed for radio frequency (RF) glow discharge of SiH4/GeH4/H2 3-gases mixture at a high pressure regime based on the fluid model. The behavior of electrons, neutrals, radicals and ions with corresponding rate constants is described by driftdiffusion equations that are coupled with the Poisson’s equation and solved with an explicit central-difference discretization scheme. The germanium (Ge) content in the deposited film and germane (GeH4) radical fraction in the gas phase are found to decrease as total gas pressure increases in contrast to the increased deposition rate, which are explained by the fact that GeHx-group species are more thoroughly depleted and less promoted by the denser plasma at high pressure compared to SiHx-group species. The multiplied population of electrons and hydrogen atoms in the quadratically denser plasma also boosts secondary reactions which are favorable for SiH3 and GeH3 and consume SiH2 and GeH2for high order radicals.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, J., Banerjee, A., and Guha, S., Appl. Phy. Lett, 70, 22 (1997).Google Scholar
Rath, J., Tichelaar, F., and Schropp, R., Solar Energy Materials & Solar Cells, 74, 553560 (2002).CrossRefGoogle Scholar
Dalal, V., Leonard, M., Booker, J., and Hegedus, S.S., IEEE PVSC Proc., 1500 (1986).Google Scholar
Ganguly, G., Ikeda, T., Nishimiya, T., Kondo, M., Matsuda, A., Appl. Phys. Lett., 69, 27 (1996).CrossRefGoogle Scholar
Meier, J., Torres, R., Platz, R., Dubail, S., Kroll, U., Selvan, J., Vaucher, N., C., Hof, Fischer, D., Keppner, H., Shah, A., Ufert, K., Giannoules, P., and Koehler, J., Mat. Res. Soc. Symp. Proc., 420, 3 (1996).CrossRefGoogle Scholar
Hegedus, S., Rocheleau, R., Tullman, R., Albright, D., Saxena, N., Buchanan, W., Schubert, K., Dozier, R., Prog. in PV: Res. & Appl., 12, 155176 (2004).Google Scholar
Matsuia, T., and Kondoa, M., Mat. Res. Soc. Symp. Proc., 1321, 2132 (2011).Google Scholar
Kushner, M. J., J Appl. Phys., 63, 25322551 (1988).CrossRefGoogle Scholar
Boeuf, J. P., Phys. Rev. A, 36, 27822792 (1987).CrossRefGoogle Scholar
Nitschke, T.E., and Graves, D., J. Appl. Phys., 76, 56465660 (1994).CrossRefGoogle Scholar
Amanatides, E., Stamou, S., and Mataras, D., J. Appl. Phys., 90, 57865798 (2001).CrossRefGoogle Scholar
Doyle, J. R., Doughty, D.A., and Gallagher, A., J. Appl. Phys., 71, 47274738 (1992).CrossRefGoogle Scholar
Simka, H., Hierlemann, M., Utz, M., and Jensen, K.F., J. Electrochem. Soc., 143, 2646 (1996).CrossRefGoogle Scholar
Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., Wagner, H., Phil. Mag., 77, 1447 (1998).CrossRefGoogle Scholar
Smit, C., Swaaij, R., Donker, H., Petit, A., Kessels, W., Sanden, M., J. Appl. Phys., 94, 3582 (2003).CrossRefGoogle Scholar
Zhao, L., Chae, Y., Song, D., Wang, D., and Yuan, Z., 37 IEEE PVSC Conf. Proc. (2011).Google Scholar
Isomura, M., Kondo, M., Matsuda, A., Sol. Energ. Mat. Sol. Cells, 66, 375380 (2001).CrossRefGoogle Scholar
Longeway, P.A., Estes, R.D., and Weaklium, H.A., J. Phys. Chem., 88, 73 (1984).CrossRefGoogle Scholar
Doyle, J. R., Doughty, D. A., and Gallagher, A., J. Appl. Phys., 68, 4375 (1990).CrossRefGoogle Scholar
Meyyappan, M., Delzeit, L., Cassell, A., and Hash, D., Plas. Sour. Scien. Tech., 12, 205 (2003).CrossRefGoogle Scholar
Leroy, O., Gousset, G., Alves, L., Perrin, J., and Jolly, J., Plas. Sour. Sci.and Technol., 7, 348 (1998).CrossRefGoogle Scholar
McCaughey, M. J., and Kushner, M. J., J. Appl. Phys., 65, 186195 (1989).CrossRefGoogle Scholar
Mahan, A. H, Xua, Y., Gedvilas, L., and Williamson, D., Thin Solid Films, 517, 35323535 (2009).CrossRefGoogle Scholar
Doyle, J. R., Doughty, D.A., and Gallagher, A., J. Appl. Phys., 69, 41694177 (1991).CrossRefGoogle Scholar
Doyle, J. R., Doughty, D. A., and Gallagher, A., J. Appl. Phys., 71, 47274738 (1992).CrossRefGoogle Scholar
Smirnov, V. N., Kinetics and Catalysis, 48, 615619 (2007).CrossRefGoogle Scholar
Hierlemann, M., Sirnka, H., Jensen, K. F., and Utz, M., J de Phys. IV, 5, C571C577 (1995).Google Scholar