Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:18:17.007Z Has data issue: false hasContentIssue false

Model Reaction Systems to Produce Monodisperse Colloids

Published online by Cambridge University Press:  10 February 2011

Kangtaek Lee
Affiliation:
Chemical Engineering and Materials Science, and the Center for Interfacial Engineering, University of Minnesota, Minneapolis, MN 55455
Alon McCormick
Affiliation:
Chemical Engineering and Materials Science, and the Center for Interfacial Engineering, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Monodispersely-sized spherical metal oxide particles have recently attracted growing attention for many industrial applications. In particulate coating applications, controlling the size and distribution of the starting colloid plays a crucial role in the final coating properties (1,2). In chromatography, both porous and nonporous monodispersely sized colloidal particles have been used as a column-packing material (3,4). Monodisperse particles can also be used as a startingn material in a ceramic processing to make ceramic materials with uniform properties for mechanical, refractory, and catalysis applications.

Even though various monodisperse metal oxide colloids are already widely used in industry, predicting and controlling the particle size distribution is frequently more dependent on experience and ingenuity rather than on modeling. There is nothing wrong with empiricism, but models can help to achieve process control, optimization, and flexibility. We have sought to assess what combination of processes in solution (both reactive and aggregative) need to be modeled, and in doing so we have found a number of very useful references that give insight into 1) the mechanism of the particle formation and growth, and 2) the effect of reaction parameters on the final size distribution by using both experimental and numerical techniques. Understanding these should allow us to intelligently design a new process in order to make particles with the desired size and distribution. In this short contribution we hope that it will be of service to provide a brief overview of some key work that may yield itself to modeling. This review is not intended to be comprehensive; instead, we have selected work that shows features that one hopes should be captured by meaningful models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hachfeld, E. A., Kim, Y. J., and Francis, L. F., Mater. Lett. 18, 141 (1993).Google Scholar
2. Kim, Y. J., and Francis, L. F., J. Am. Ceram. Soc. 76, 737 (1993).Google Scholar
3. Hanson, M., and Unger, K. K., LC GC-Magazine Separation Sci. 15, 170 (1997).Google Scholar
4. Hanson, M., and Unger, K. K., LC GC-Magazine Separation Sci. 15, 364 (1997).Google Scholar
5. Stöber, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
6. Bogush, G. H., Tracy, M. A., and Zukoski, C. F., J. Non-Cryst. Solids 104, 95 (1988).Google Scholar
7. Bogush, G. H., and Zukoski, C. F., in “Ultrastructure Proc. Adv. Ceramics” (Mckenzie, J. D. and Ulrich, D. R., Eds.), p. 477. Wiley, 1988.Google Scholar
8. Byers, C. H., Harris, M. T., and Williams, D. F., Ind. Eng. Chem. Res. 26, 1916 (1987).Google Scholar
9. Tan, C. G., Bowen, B. D., and Epstein, N., J. Colloid Interface Sci. 118, 290 (1987).Google Scholar
10. Giesche, H., J. Eur. Ceram. Soc. 14, 189 (1994).Google Scholar
11. van Blaaderen, A., van Geest, J., and Vrij, A., J. Colloid Interface Sci. 154, 481 (1992).Google Scholar
12. Bogush, G. H., and Zukoski, C. F., J. Colloid Interface Sci. 142, 1 (1991).Google Scholar
13. Lee, K., Look, J.-L., Harris, M. T., and McCormick, A. V., J. Colloid Interface Sci. in press (1997).Google Scholar
14. Selle, M. H., Sjoblom, J., and Lindberg, R., Colloid Polym. Sci. 273, 951 (1995).Google Scholar
15. Giesche, H., J. Eur. Ceram. Soc. 14, 205 (1994).Google Scholar
16. Chen, S.-L., Dong, P., Yang, G.-H., and Yang, J.-J., J. Colloid Interface Sci. 180, 237 (1996).Google Scholar
17. Ogihara, T., Ilzuka, M., Yanagawa, T., Ogata, N., and Yoshida, K., J. Mater. Sci. 27, 55 (1992).Google Scholar
18. van Blaaderen, A., and Kentgens, A. P. M., J. Non-Cryst. Solids 149, 161 (1992).Google Scholar
19. Chang, C.-L., and Fogler, H. S., AIChE J. 42, 3153 (1996).Google Scholar
20. Arriagada, F. J., and Osseo-Asare, K., J. Colloid Interface Sci. 170, 8 (1995).Google Scholar
21. Espiard, P., Mark, J. E., and Guyot, A., Polym. Bull. 24, 173 (1990).Google Scholar
22. Osseo-Asare, K., and Arriagada, F. J., Colloids and Surfaces 50, 321 (1990).Google Scholar
23. Osseo-Asare, K., and Arriagada, F. J., Colloids and Surfaces 69, 105 (1992).Google Scholar
24. Yamaguchi, H., Ishikawa, T., and Kondo, S., Colloids and Surfaces 37, 71 (1989).Google Scholar
25. Yanagi, M., Asano, Y., Kandori, K., Kon-no, K., and Kitahara, A., in “Proc. 1986 Shikizai Technical Conf.” Eds.), p. 86. Osaka, 1986.Google Scholar
26. Lindberg, R., Sjöblom, J., and Sundholm, G., Colloids and Surfaces 99, 79 (1995).Google Scholar
27. Buining, P. A., Liz-Marzan, L. M., and Philipse, A. P., J. Colloid Interface Sci. 179, 318 (1996).Google Scholar
28. Nawrocki, J., Rigney, M. P., McCormick, A. V., and Carr, P. W., J. Chromatogr. A 657, 229 (1993).Google Scholar
29. Blumenthal, W. B., “The Chemical Behavior of Zirconium.D. Van Nostrand Company, Inc., 1958.Google Scholar
30. Baes, C. F., and Mesmer, R. E., “The Hydrolysis of Cations.John Wiley & Sons, 1976.Google Scholar
31. Aiken, B., Hsu, W. P., and Matijevic, E., J. Mater. Sci. 25, 1886 (1990).Google Scholar
32. Bartlett, J. R., Woolfrey, J. L., Percy, M., Spiccia, L., and West, B. O., J. Sol-Gel Sci. Tech. 2, 215 (1994).Google Scholar
33. Bleier, A., and Cannon, R. M., in “Better Ceramics Through Chemistry II” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 71. Material Research Society, Pittsburgh, 1986.Google Scholar
34. Dechamps, M., Djuricic, B., and Pickering, S., J. Am. Ceram. Soc. 78, 2873 (1995).Google Scholar
35. Dirksen, J. A., and Ring, T. A., J. Am. Ceram. Soc. 73, 131 (1990).Google Scholar
36. Fegley, B., White, P., and Bowen, H. K., Am. Ceram. Soc. Bull. 64, 1115 (1985).Google Scholar
37. Fryer, J. R., Hutchison, J. L., and Paterson, R., J. Colloid Interface Sci. 34, 238 (1970).Google Scholar
38. Harris, M. T., Byers, C. H., and Brunson, R. R., in “Better Ceramics Through Chemistry III” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 287. Material Research Society, Pittsburgh, 1988.Google Scholar
39. Harris, M. T., “Ultrafine Precursor Powders by Homogeneous Precipitation and Electrodispersion.” Ph.D. thesis, University of Tennessee, 1992.Google Scholar
40. Harris, M. T., Sisson, W. G., Scott, T. C., Basaran, O. A., and Byers, C. H., in “Better Ceramics Through Chemistry VI” (Cheetham, A. K., Brinker, C. J., Mecartney, M. L. and Sanchez, C., Eds.), p. 171. Material Research Society, Pittsburgh, 1994.Google Scholar
41. Kumazawa, H., Hori, Y., and , E. S., Chem. Eng. J. 51, 129 (1993).Google Scholar
42. Kumazawa, H., Inoue, T., and Sada, E., Chem. Eng. J. 55, 93 (1994).Google Scholar
43. Lerot, L., Legrand, F., and De Bruycker, P., J. Mater. Sci. 26, 2353 (1991).Google Scholar
44. Matsui, K., Suzuki, H., and Ohgai, M., J. Am. Ceram. Soc. 78, 146 (1995).Google Scholar
45. Mazdiyasni, K. S., in “Better Ceramics Through Chemistry” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 175. Material Research Society, 1984.Google Scholar
46. Ogihara, T., Mizutani, N., and Kato, M., J. Am. Ceram. Soc. 72, 421 (1989).Google Scholar
47. Rijnten, H. T., “Formation, Preparation and Properties of Hydrous Zirconia.Academic Press, 1970.Google Scholar
48. Bradley, D. C., Mehrotra, R., and Gaur, D. P., “Metal alkoxides.Academic Press, 1978.Google Scholar
49. Sanchez, C., and Livage, J., New J. Chem. 14, 513 (1990).Google Scholar
50. Livage, J., Henry, M., and Sanchez, C., Prog. Solid St. Chem. 18, 259 (1988).Google Scholar
51. Livage, J., and Sanchez, C., J. Non-Cryst. Solids 145, 11 (1992).Google Scholar
52. Henry, M., Jolivet, J. P., and Livage, J., Structure and Bonding 77, 153 (1992).Google Scholar
53. Moon, Y. T., Park, H. K., Kim, D. K., and , C.H., , K., J. Am. Ceram. Soc. 78, 2690 (1995).Google Scholar
54. Barringer, E. A., and Bowen, H. K., J. Am. Ceram. Soc. 65, C199 (1982).Google Scholar
55. Barringer, E. A., and Bowen, H. K., Langmuir 1, 420 (1985).Google Scholar
56. Barringer, E. A., and Bowen, H. K., Langmuir 1, 414 (1985).Google Scholar
57. Jean, J. H., and Ring, T. A., Am. Ceram. Soc. Bull. 65, 1574 (1986).Google Scholar
58. Jean, J. H., and Ring, T. A., Langmuir 2, 251 (1986).Google Scholar
59. Hartel, R. W., and Berglund, K. A., in “Better Ceramics Through Chemistry II” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 633. Material Research Society, Pittsburgh, 1986.Google Scholar
60. Edelson, L. H., and Glaeser, A. M., J. Am. Ceram. Soc. 71, 225 (1988).Google Scholar
61. Bailey, J. K., and Mecartney, M. L., in “Better Ceramics Through Chemistry IV” (B. Zelinski, J. J., Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 153. Material Research Society, Pittsburgh, 1990.Google Scholar
62. Look, J.-L., Bogush, G. H., and Zukoski, C. F., Faraday Discuss. Chem. Soc. 90, 345 (1990).Google Scholar
63. Harris, M. T., and Byers, C. H., J. Non-Cryst. Solids 103, 49 (1988).Google Scholar
64. Kallala, M., Sanchez, C., and Cabane, B., Phys. Rev. E. 48, 3692 (1993).Google Scholar
65. Kallala, M., Sanchez, C., and Cabane, B., J. Con-Cryst. Solids 147&148, 189 (1992).Google Scholar
66. Matijevic, E., Budnik, M., and Meites, L., J. Colloid Interface Sci. 61, 302 (1977).Google Scholar
67. Kato, A., Takeshita, Y., and Katatae, Y., in “Processing Science of Advanced Ceramics” (Aksay, I. A., McVay, G. L. and Ulrich, D. R., Eds.), p. 13. Material Research Society, Pittsburgh, 1989.Google Scholar
68. Berglund, K. A., Tallant, D. R., and Dosch, R. G., in “Science of Ceramic Chemical Processing” (Hench, L. L. and Ulrich, D. R., Eds.), p. 94. John Wiley & Sons, Inc., 1986.Google Scholar
69. Harris, M. T., Basaran, O. A., and Byers, C. H., in “Better Ceramics Through Chemistry V” Eds.), p. 291. Material Research Society, 1992.Google Scholar
70. Willard, H. H., and Tang, N. K., J. Am. Ceram. Soc. 59, 1190 (1937).Google Scholar
71. Ayral, A., Phalippou, J., and Droguet, J. C., in “Better Ceramics Through Chemistry III” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 239. Material Research Society, Pittsburgh, 1988.Google Scholar
72. Blendell, J. E., Bowen, H. K., and Coble, R. L., Ceram. Bull. 63, 797 (1984).Google Scholar
73. Brace, R., and Matijevic, E., J. Inorg. Nucl. Chem. 35, 3691 (1973).Google Scholar
74. Bradley, S. M., and Hanna, J. V., J. Am. Ceram. Soc. 116, 7771 (1994).Google Scholar
75. Catone, D. L., and Matijevic, E., J. Colloid Interface Sci. 48, 291 (1974).Google Scholar
76. Fanelli, A. J., and Burlew, J. V., J. Am. Ceram. Soc. 69, C174 (1986).Google Scholar
77. Gu, Y., Zhao, S., Hu, L., and Chen, M., Huagong Yejin/Eng. Chem. & Metallurgy 14, 14 (1993).Google Scholar
78. Harris, M. T., Byers, C. H., and Brunson, R. R., in “Processing Science of Advanced Ceramics” (Aksay, I. A., McVay, G. L. and Ulrich, D. R., Eds.), p. 23. Material Research Society, Pittsburgh, 1989.Google Scholar
79. Her, Y.-S., Lee, S.-H., and Matijevic, E., J. Mater. Res. 11, 156 (1996).Google Scholar
80. Ilievski, D., and White, E. T., Chem. Eng. Sec. 49, 3227 (1994).Google Scholar
81. Lee, S.-K., Shinozake, K., and Mizutani, N., J. Ceram. Soc. Jpn. 100, 1140 (1992).Google Scholar
82. Rezgui, S., Gates, B. C., Burkett, S. L., and Davis, M. E., Chem. Mater. 6, 2390 (1994).Google Scholar
83. Simon, C., Bredesen, R., Grondal, H., Hustoft, A. G., and Tangstad, E., J. Mater. Sci. 30, 5554 (1995).Google Scholar
84. Singh, V. K., and Sinha, R. K., Mater. Lett. 18, 201 (1994).Google Scholar
85. Singhal, A., and Keefer, K. D., J. Mater. Res. 9, 1973 (1994).Google Scholar
86. Song, K. C., and Chung, I. J., J. Non-Cryst. Solids 108, 37 (1989).Google Scholar
87. Veesler, S., and Boistelle, R., J. Cryst. Growth 142, 177 (1994).Google Scholar
88. Yoldas, B. E., J. Appl. Chem. Biotechnol. 23, 803 (1973).Google Scholar
89. Yoldas, B. E., Ceram. Bull. 54, 289 (1974).Google Scholar
90. Yoldas, B. E., and Partlow, D. P., J. Mater. Sci. 23, 1895 (1988).Google Scholar
91. Ansorge, F., and Russel, C., J. Mater. Sci. 28, 40 (1993).Google Scholar
92. Fegley, B., and Barringer, E. A., in “Better Ceramics Through Chemistry” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 187. Material Research Society, Pittsburgh, 1984.Google Scholar
93. Heistand, R. H., Oguri, Y., Okamura, H., Moffatt, W. C., Novich, B., Barringer, E. A., and Bowen, H. K., in “Science of ceramic chemical processing” (Henry, L. L. and Ulrich, D. R., Eds.), p. 482. John Wiley & Sons, Inc., New York, 1986.Google Scholar
94. Ingebrethsen, B. J., Matijevic, E., and Partch, R. E., J. Colloid Interface Sci. 95, 228 (1983).Google Scholar
95. Okamura, H., Barringer, E. A., and Bowen, H. K., J. Am. Ceram. Soc. 69, C22 (1986).Google Scholar
96. Okamura, H., Barringer, E. A., and Bowen, H. K., J. Mater. Sci. 24, 1867 (1989).Google Scholar
97. Ramakrishnan, K. N., Venkadesan, S., and Nagarajan, R., Scripta Materialia 34, 151 (1996).Google Scholar
98. Tartaj, P., Serna, C. J., and Ocana, M., J. Am. Ceram. Soc. 78, 1147 (1995).Google Scholar
99. Lee, K., Pozarnsky, G. A., Zarembowitch, O., and McCormick, A. V., Chem. Eng. J. 64, 215 (1996).Google Scholar
100. Hung, C.-H., and Katz, J. L., J. Mater. Res. 7, 1861 (1992).Google Scholar
101. Hung, C.-H., Miquel, P. F., and Katz, J. L., J. Mater. Res. 7, 1870 (1992).Google Scholar
102. Miquel, P. F., Hung, C.-H., and Katz, J. L., J. Mater. Res. 8, 2404 (1993).Google Scholar