Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T22:03:40.202Z Has data issue: false hasContentIssue false

A Model for the Critical Height for Dislocation Annihilation and Recombination in GaN Columns Deposited by Patterned Growth

Published online by Cambridge University Press:  01 February 2011

M. E. Twigg
Affiliation:
Electronic Science and Technology Division Naval Research Laboratory Washington, DC, 20375, U.S.A
N. D. Bassim
Affiliation:
Electronic Science and Technology Division Naval Research Laboratory Washington, DC, 20375, U.S.A
C. R. Eddy
Affiliation:
Electronic Science and Technology Division Naval Research Laboratory Washington, DC, 20375, U.S.A
R. L. Henry
Affiliation:
Electronic Science and Technology Division Naval Research Laboratory Washington, DC, 20375, U.S.A
R. T. Holm
Affiliation:
Electronic Science and Technology Division Naval Research Laboratory Washington, DC, 20375, U.S.A
M. A. Mastro
Affiliation:
Electronic Science and Technology Division Naval Research Laboratory Washington, DC, 20375, U.S.A
Get access

Abstract

In order to reduce vertical leakage in III-nitride detectors, we have grown a patterned array of hexagonal GaN columns on masked heteroepitaxial GaN template layers using a-plane sapphire substrates. In addition to eliminating cracking, we have found that for GaN columns tens of microns in diameter and several microns high, the dislocation density is also significantly reduced. We have developed a simple closed-form analytical model for predicting the critical column height for the onset of the reduction in the dislocation density. Among the predictions of this model is that the critical column height for the onset of dislocation density reduction is proportional to the product of column width and the grain size of the GaN film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pau, J. L., Rivera, C., Munoz, E., Calleja, E., Schuhle, U., Frayssinet, E., Beaumont, B., Faurie, J. P., Gilbart, P., J. Appl. Phys. 95, 8275 (2004).Google Scholar
2. Hsu, J. W. P., Manfra, M. J., Molnar, R. J., Heying, B., and Speck, J. S., Appl. Phys. Lett. 81, 79 (2002).Google Scholar
3. Mathis, S. K., Romanov, A. E., Chen, L. F., Beltz, G. E., Pompe, W., and Speck, J. S., J. Cryst. Growth 231, 371 (2001).Google Scholar
4. Böttcher, T., Einfeldt, S., Figge, S., Chierchia, R., Heinke, H., and Hommel, D., and Speck, J. S., Applied Physics Letters 78, 1976 (2001).Google Scholar
5. Honda, Y., Kuroiwa, Y., Yamaguchi, M., and Sawaki, N., Applied Physics Letters, 80 (2), 222 (2002).Google Scholar
6. Feynman, R. P., Leighton, R. B., and Sands, M., The Feynman Lectures on Physics, Vol.2 (Addison Wesley, Reading MA, 1964) p.38–6.Google Scholar
7. Timoshenko, S., Theory of Elasticity (McGraw-Hill, New York, 1934) 220284.Google Scholar
8. Hirth, J. P. and Lothe, J., Theory of Dislocations (Krieger, Malabar FL, 1992).Google Scholar
9. Twigg, M. E., J. Appl. Phys. 68, 5109 (1990).Google Scholar
10. Romanov, A. E., Fini, P., and Speck, J. S., J. Appl. Phys. 93, 106 (2003).Google Scholar
11. Reif, F., Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965) p.16.Google Scholar
12. Riordan, J., An Introduction to Combinatorial Analysis (Wiley, New York, 1958) p.92.Google Scholar
13. People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar